Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Liposome Res ; 33(2): 129-143, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35730480

RESUMEN

Hyaluronic Acid (HA) has been applied as an anti-ageing molecule in the form of topical products. Current topical commercial formulations of HA face the limitations of very small and stagnant skin permeation, thereby demanding enduring administration of the formulation to sustain its action. In this study, Lipid-based nanocarriers in the form of ethosomes were formulated in a 1% w/w HA strength and were extensively evaluated in vitro, ex-vivo, and in vivo parameters along with a comparison to it's commercial counterpart. The optimised ethosomes-based HA gel formulation revealed required pH (6.9 ± 0.2), small globule size (1024 ± 9 nm), zeta potential of -6.39 ± 0.2 mV, and 98 ± 1.1% HA content. The ex vivo skin permeation and deposition potenwere conferred on synthetic membrane Strat-M, Human cadaver skin, mice skin, rat skin, and pig skin, and both parameters were found to be much higher in comparison to the commercial topical formulation. Skin deposition capacity of the optimised HA formulation was further confirmed by Scan Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM) and it was observed that the developed ethosomal gel formulation got deposited more on the treated skin. The in vivo anti-ageing effect of optimised ethosomal gel on rats was found to be greater when compared to commercial formulation of HA and the developed carrier-based system proved to deliver the HA molecule in very small amounts into the systemic circulation. The results endorse the ethosomal carrier-based formulation of HA as a attractive technique for better local bioavailability of HA.


Asunto(s)
Ácido Hialurónico , Absorción Cutánea , Ratones , Ratas , Humanos , Animales , Porcinos , Ácido Hialurónico/metabolismo , Liposomas/metabolismo , Piel/metabolismo , Administración Tópica , Administración Cutánea
2.
Curr Med Chem ; 27(21): 3463-3498, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31223077

RESUMEN

Locoregional drug delivery is a novel approach for the effective delivery of anti-cancer agents as it exposes the tumors to high concentration of drugs. In situ gelling systems have fetched paramount attention in the field of localized cancer chemotherapy due to their targeted delivery, ease of preparation, prolonged or sustained drug release and improved patient compliance. Numerous polymers have been investigated for their properties like swelling along with biodegradation, drug release and physicochemical properties for successful targeting of the drugs at the site of implantation. The polymers such as chitosan, Hyaluronic Acid (HA), poloxamer, Poly Glycolic Lactic Acid (PGLA) and Poly Lactic Acid (PLA) tend to form in situ hydrogels and have been exploited to develop localized delivery vehicles. These formulations are administered in the solution form and on exposure to physiological environment such as temperature, pH or ionic composition they undergo phase conversion into a hydrogel drug depot. The use of in situ gelling approach has provided prospects to increase overall survival and life quality of cancer patient by enhancing the bioavailability of drug to the site of tumor by minimizing the exposure to normal cells and alleviating systemic side effects. Because of its favorable safety profile and clinical benefits, United States Food and Drug Administration (U.S. FDA) has approved polymer based in situ systems for prolonged locoregional activity. This article discusses the rationale for developing in situ systems for targeted delivery of anti-cancer agents with special emphasis on types of polymers used to formulate the in situ system. In situ formulations for locoregional anti-cancer drug delivery that are marketed and are under clinical trials have also been discussed in detail in this article.


Asunto(s)
Antineoplásicos/farmacología , Materiales Biocompatibles , Quitosano , Preparaciones de Acción Retardada , Sistemas de Liberación de Medicamentos , Humanos , Hidrogeles , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA