Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 140
1.
Sex Transm Dis ; 51(2): 125-127, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-37934152

ABSTRACT: 1 H-NMR metabolomics-derived biomarkers maltose, acetate, formate, and lactate have excellent potential as predictive biomarkers for bacterial vaginosis with an area under curve of 0.97 (95% confidence interval, 0.88-1.00), sensitivity of 0.90, and specificity of 0.95.


Vaginosis, Bacterial , Female , Humans , Vaginosis, Bacterial/diagnosis , Vaginosis, Bacterial/microbiology , Metabolomics , Biomarkers , Acetates
2.
J Stroke Cerebrovasc Dis ; 32(8): 107184, 2023 Aug.
Article En | MEDLINE | ID: mdl-37276786

OBJECTIVE: Amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) is an ionotropic transmembrane receptor for glutamate. AMPA receptor blockers have been reported to prevent neurological damage and enhance the post stroke recovery in rats. Decanoic acid, a medium-chain fatty acid, has been reported to exhibit non-competitive AMPA receptor antagonism. This study evaluated the effect of decanoic acid administered before and after ischemia reperfusion injury on neurological damage and post stroke recovery in rats. METHODS: Middle cerebral artery occlusion (MCAo) was performed by using the intraluminal method to induce focal cerebral ischemia. Decanoic acid (120 mg/kg) was administered orally for 1 day (5-10 min post reperfusion) in one group and for 2 days (24 h pre and 5-10 min post reperfusion) in the other group. Effect on neurological damage and post stroke recovery was assessed by neurobehavioral parameters, MRI and TTC staining along with inflammatory, oxidative, apoptotic, and neuroprotective biomarkers. RESULTS: Decanoic acid significantly reduced the MCAo induced neurological damage and infarct size. Decanoic acid treatment increased the motor coordination and grip strength. Furthermore, levels of inflammatory (TNFα, IL-1ß and IL-6), oxidative stress (MDA), apoptotic (TUNEL positive cells) and neurological injury (GFAP) biomarkers were reduced after decanoic acid treatment. Anti-inflammatory cytokine (IL-10) and neuroprotective markers (NT-3, BDNF and TrkB) were found to be significantly increased with decanoic acid treatment. CONCLUSION: This study showed protective effects of decanoic acid against ischemia reperfusion injury in rats. Anti-inflammatory, antioxidant, neuroprotective, and anti-apoptotic properties may be responsible for the beneficial effects of decanoic acid observed in the study.


Reperfusion Injury , Stroke , Animals , Rats , Infarction, Middle Cerebral Artery/drug therapy , Receptors, AMPA , Stroke/drug therapy , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Oxidative Stress , Esters
3.
Naunyn Schmiedebergs Arch Pharmacol ; 396(12): 3529-3545, 2023 12.
Article En | MEDLINE | ID: mdl-37231168

The present study evaluates the effect of modulating α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) by inhibiting them in the acute phase and activating them in the sub-acute phase on post-stroke recovery in middle cerebral artery occlusion (MCAo) model of stroke in rats. After 90 min of MCAo, perampanel (an AMPAR antagonist, 1.5 mg/kg i.p) and aniracetam (an AMPA agonist, 50 mg/kg i.p.) were administered for different durations after MCAo. Later, after obtaining the best time point for the antagonist and the agonist treatment protocols, sequential treatment with perampanel and aniracetam were given, and the effect on neurological damage and post stroke recovery were assessed. Perampanel and aniracetam significantly protected MCAo-induced neurological damage and diminished the infarct percentage. Furthermore, treatment with these study drugs improved the motor coordination and grip strength. Sequential treatment with perampanel and aniracetam reduced the infarct percentage as assessed by MRI. Moreover, these compounds diminished the inflammation via reducing the levels of pro-inflammatory cytokines (TNF-α, IL-1ß) and increasing the levels of anti-inflammatory cytokine (IL-10) along with reductions in GFAP expression. Moreover, the neuroprotective markers (BDNF and TrkB) were found to be significantly increased. Levels of apoptotic markers (Bax, cleaved-caspase-3; Bcl2 and TUNEL positive cells) and neuronal damage (MAP-2) were normalized with the AMPA antagonist and agonist treatment. Expressions of GluR1 and GluR2 subunits of AMPAR were significantly enhanced with sequential treatment. The present study thus showed that modulation of AMPAR improves neurobehavioral deficits and reduces the infarct percentage through anti-inflammatory, neuroprotective and anti-apoptotic effects.


Ischemic Stroke , Neuroprotective Agents , Stroke , Rats , Animals , Receptors, AMPA/metabolism , Ischemic Stroke/drug therapy , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/therapeutic use , Stroke/drug therapy , Infarction, Middle Cerebral Artery/drug therapy , Anti-Inflammatory Agents/therapeutic use , Models, Theoretical , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
4.
NMR Biomed ; : e4941, 2023 Mar 30.
Article En | MEDLINE | ID: mdl-36999218

The diagnosis of pediatric tuberculosis (TB) remains a major challenge, hence the evaluation of new tools for improved diagnostics is urgently required. We investigated the serum metabolic profile of children with culture-confirmed intra-thoracic TB (ITTB) (n = 23) and compared it with those of non-TB controls (NTCs) (n = 13) using proton NMR spectroscopy-based targeted and untargeted metabolomics approaches. In targeted metabolic profiling, five metabolites (histidine, glycerophosphocholine, creatine/phosphocreatine, acetate, and choline) differentiated TB children from NTCs. Additionally, seven discriminatory metabolites (N-α-acetyl-lysine, polyunsaturated fatty acids, phenylalanine, lysine, lipids, glutamate + glutamine, and dimethylglycine) were identified in untargeted metabolic profiling. The pathway analysis revealed alterations in six metabolic pathways. The altered metabolites were associated with impaired protein synthesis, hindered anti-inflammatory and cytoprotective mechanisms, abnormalities in energy generation processes and membrane metabolism, and deregulated fatty acid and lipid metabolisms in children with ITTB. The diagnostic significance of the classification models obtained from significantly distinguishing metabolites showed sensitivity, specificity, and area under the curve of 78.2%, 84.6%, and 0.86, respectively, in the targeted profiling and 92.3%, 100%, and 0.99, respectively, in the untargeted profiling. Our findings highlight detectable metabolic changes in childhood ITTB; however, further validation is warranted in a large cohort of the pediatric population.

5.
Indian J Psychiatry ; 65(11): 1151-1157, 2023 Nov.
Article En | MEDLINE | ID: mdl-38249138

Background: Obsessive-compulsive disorder (OCD) is a common psychiatric disorder whose underlying pathophysiology is insufficiently understood. The pathophysiology of OCD may be related to abnormalities in the biochemistry of neurotransmitters. Aim: The aim of the present study was to measure the absolute concentration of various metabolites in the right dorsolateral prefrontal cortex (DLPFC) and caudate nucleus (CN) in treatment-naive patients with OCD and compare it with healthy controls (HCs). Methods: The present study investigated the metabolic profile of two brain regions, namely right DLPFC and CN, by using single voxel in-vivo proton magnetic resonance spectroscopy (1H MRS) in drug-naive patients with OCD (n = 17, mean age = 30.71 ± 10.104 years) and compared it with healthy controls (n = 13, mean age = 30.77 ± 5.449 years). The patients with OCD were recruited after appropriate psychometric assessments. The 1H-MRS experiments were performed using the 3 Tesla (3T) human MR scanner, and absolute concentrations of metabolites were estimated using the LC model. Results: Significantly lower concentration of tNAA in the right DLPFC was observed in the patients with OCD compared to the controls, which may be indicative of neurodegeneration in this region. However, no significant differences were observed in the concentrations of the metabolites between the patients and controls in the CN region. The level of tNAA in DLPFC significantly correlated with the disability level (WHO-DAS) of the patients. Conclusions: The present study demonstrates abnormalities in the metabolic profile of an important region, DLPFC of the CSTC circuit, which is suggestive of neurodegeneration in the region in OCD patients.

6.
Asian J Psychiatr ; 78: 103273, 2022 Dec.
Article En | MEDLINE | ID: mdl-36270047

OBJECTIVES: We assessed and correlated neurochemical levels and cognitive functions in left dorsolateral prefrontal cortex (DLPFC) and left hippocampus in euthymic patients with bipolar disorder and compared these with healthy controls METHODOLOGY: Twenty-five right-handed euthymic patients (HAM-D score < 7, and YMRS score < 7) with bipolar disorder and 20 age and gender matched controls were compared for neurometabolites (n-acetylaspartate - tNAA, choline - Cho, creatinine - Cr, myoinositol - Ins, and glutamine/glutamate - Glu/Gln) measured in left DLPFC and left hippocampus using single voxel magnetic resonance spectroscopy (MRS) and cognitive functions assessed using trail making test (TMT - A and B), wisconsin card sorting test (WCST), and wechsler memory scale (WMS-III Indian adaptation). RESULTS: The two groups were comparable on socio-demographic variables. tNAA levels in DLPFC and hippocampus, and glutamate levels in hippocampus were found to be significantly lower and Inositol and glutamine levels in hippocampus were found to be significantly higher in patients as compared to controls. Patients performed significantly poorly as compared to controls on TMT A & B, all subscales of WMS - III, 5 subscales of WCST, including perseverative responses and errors. The tNAA and glutamate levels in left DLPFC in patients correlated with scores on TMT A & B, and several subscales of WCST and WMS-III. tNAA concentration in left hippocampus in patients correlated with scores on subscales of WMS-III. CONCLUSION: Neurochemical dysfunction in select brain areas directly correlates with impairment in cognitive functions seen in patients with bipolar disorder in euthymic phase.


Bipolar Disorder , Humans , Proton Magnetic Resonance Spectroscopy , Glutamine , Magnetic Resonance Spectroscopy/methods , Cognition , Inositol , Glutamates
7.
Biochim Biophys Acta Bioenerg ; 1863(8): 148915, 2022 11 01.
Article En | MEDLINE | ID: mdl-36058252

Although the development of chemoresistance is multifactorial, active chemotherapeutic efflux driven by upregulations in ATP binding cassette (ABC) transporters are commonplace. Chemotherapeutic efflux pumps, like ABCB1, couple drug efflux to ATP hydrolysis and thus potentially elevate cellular demand for ATP resynthesis. Elevations in both mitochondrial content and cellular respiration are common phenotypes accompanying many models of cancer cell chemoresistance, including those dependent on ABCB1. The present study set out to characterize potential mitochondrial remodeling commensurate with ABCB1-dependent chemoresistance, as well as investigate the impact of ABCB1 activity on mitochondrial respiratory kinetics. To do this, comprehensive bioenergetic phenotyping was performed across ABCB1-dependent chemoresistant cell models and compared to chemosensitive controls. In doxorubicin (DOX) resistant ovarian cancer cells, the combination of both increased mitochondrial content and enhanced respiratory complex I (CI) boosted intrinsic oxidative phosphorylation (OXPHOS) power output. With respect to ABCB1, acute ABCB1 inhibition partially normalized intact basal mitochondrial respiration between chemosensitive and chemoresistant cells, suggesting that active ABCB1 contributes to mitochondrial remodeling in favor of enhanced OXPHOS. Interestingly, while enhanced OXPHOS power output supported ABCB1 drug efflux when DOX was present, in the absence of chemotherapeutic stress, enhanced OXPHOS power output was associated with reduced tumorigenicity.


Drug Resistance, Multiple , Ovarian Neoplasms , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphate/metabolism , Cell Line, Tumor , Doxorubicin/metabolism , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , Electron Transport Complex I/metabolism , Female , Humans , Ovarian Neoplasms/drug therapy , Oxidative Phosphorylation
8.
Int J Yoga Therap ; 32(2022)2022 Jan 01.
Article En | MEDLINE | ID: mdl-35850136

The spread of COVID-19 has resulted in reports of increase in stress, anxiety, and depression across society, especially in people who have tested positive for COVID-19, which affects their mental health and well-being. This article reports a quasi-randomized controlled study conducted in the COVID wards of a hospital to examine the efficacy of add-on yoga intervention in reducing stress, anxiety, and depression in COVID-affected patients under quarantine. The peripheral capillary oxygen saturation level and heart rate of the COVID-19-affected patients were also measured. A total of 62 COVID-19-positive patients participated in the study. The participants were randomized into a control group (n = 31), which received conventional medical treatment alone, and a yoga intervention group (n = 31), which received 50 minutes of yoga intervention along with the conventional medical treatment. Standardized Hospital Anxiety and Depression Scale, Generalized Anxiety Disorder-7 Item, Patient Health Questionnaire-9, and Perceived Stress Scale were administered at the beginning and end of the quarantine period. A significant decrease in stress, anxiety, and depression was observed in the patients who undertook the add-on yoga intervention. There was also a significant decrease in anxiety in the control group, but the intervention group had a larger decrease compared to the control group. Further significant improvements in oxygen saturation and heart rate levels were observed in the group of patients who were practicing yoga, but no significant improvement was observed in the control group. Findings of this study suggest that yoga intervention can be an effective add-on practice in reducing stress, anxiety, and depression levels of COVID-19 patients.


COVID-19 , Yoga , Anxiety/therapy , Anxiety Disorders/therapy , COVID-19/complications , Humans , Quality of Life , Yoga/psychology
9.
Front Hum Neurosci ; 16: 782579, 2022.
Article En | MEDLINE | ID: mdl-35655925

Gluten ataxia is a rare immune-mediated neurological disorder caused by the ingestion of gluten. The diagnosis is not straightforward as antibodies are present in only up to 38% of patients, but often at lower titers. The symptoms of ataxia may be mild at the onset but lead to permanent damage if remain untreated. It is characterized by damage to the cerebellum however, the pathophysiology of the disease is not clearly understood. The present study investigated the neurochemical profile of vermis and right cerebellum and structural changes in various brain regions of patients with gluten ataxia (n = 6, age range 40-65 years) and compared it with healthy controls (n = 10, 40-55 years). Volumetric 3-D T1 and T1-weighted magnetic resonance imaging (MRI) in the three planes (axial, coronal, and sagittal) of the whole brain and single-voxel 1H- magnetic resonance spectroscopy (MRS) of the vermis and right cerebellum were acquired on 3 T human MR scanner. The metabolite concentrations were estimated using LC Model (6.1-4A) while brain volumes were estimated using the online tool volBrain pipeline and CERES and corrected for partial volumes. The levels of neuro-metabolites (N-acetyl aspartate + N-acetyl aspartate glutamate, glycerophosphocholine + phosphocholine, and total creatine) were found to be significantly lower in vermis, while N-acetyl aspartate + N-acetyl aspartate glutamate and glycerophosphocholine + phosphocholine was lower in cerebellum regions in the patients with gluten ataxia compared to healthy controls. A significant reduction in the white matter of (total brain, cerebellum, and cerebrum); reduction in the volumes of cerebellum lobe (X) and thalamus while lateral ventricles were increased in the patients with gluten ataxia compared to healthy controls. The reduced neuronal metabolites along with structural changes in the brain suggested neuronal degeneration in the patients with gluten ataxia. Our preliminary findings may be useful in understanding the gluten-induced cerebral damage and indicated that MRI and MRS may serve as a non-invasive useful tool in the early diagnosis, thereby enabling better management of these patients.

10.
Diagn Interv Radiol ; 28(3): 275-284, 2022 May.
Article En | MEDLINE | ID: mdl-35748212

PURPOSE The aim of the study was to radiolabel, characterize, and perform in vitro and in vivo assessment of Technetium-99m (Tc-99m) tamoxifen for screening ER expressing lesions in breast cancer patients. METHODS In this study, tamoxifen has been radiolabeled with Tc-99m via Tc-99m-tricarbonyl core. The characterization and quality control tests of Tc-99m-tamoxifen were performed. In vitro recep- tor binding and blocking studies were performed in both positive control (MCF-7) and negative control cell lines (MDA-MB-231). Normal biodistribution studies were performed in female Wistar albino rats. The pilot clinical studies were performed in 4 ER-expressing breast cancer patients. Of the 4 patients, 1 was on tamoxifen therapy. All 4 patients had also undergone Fluorine-18 fluorodeoxyglucose (F-18-FDG) positron emission tomography/computed tomography. RESULTS Tamoxifen was radiolabeled with Tc-99m via Tc-99m-tricarbonyl core with more than 95% radio- chemical yield. Mass spectra showed a peak corresponding to the molecular weight of Tc-99m- tricarbonyl and Tc-99m-tamoxifen. The site of binding of Tc-99m-tricarbonyl with tamoxifen was determined by proton nuclear magnetic resonance. The Tc-99m-tamoxifen showed 30% binding with MCF-7 and only 1%-2% receptor binding with MDA-MB-231 cell lines. Also, the percentage of receptor binding was drastically reduced (up to 72%) when ER was saturated with 50 times the excess molar ratio of unlabeled tamoxifen. In a pilot patient study, Tc-99m-tamoxifen uptake was observed in primary and metastatic lesions. However, no uptake was observed in a patient who was on tamoxifen therapy. The uptake of F-18-FDG was noted in all the patients. CONCLUSION Tamoxifen was radiolabeled with an in-house-synthesized Tc-99m-tricarbonyl core. The radio- labeled complex has been characterized and evaluated for receptor specificity in in vitro and in vivo studies. Also, this is the first clinical study using Tc-99m-tamoxifen for imaging ER. More patients need to be evaluated to further explore the role of Tc-99m-tamoxifen in ER-expressing lesions.


Breast Neoplasms , Technetium , Animals , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Female , Fluorodeoxyglucose F18 , Humans , Radiopharmaceuticals , Rats , Receptors, Estrogen/metabolism , Tamoxifen/pharmacology , Technetium/chemistry , Tissue Distribution
11.
Clin Chim Acta ; 531: 291-301, 2022 Jun 01.
Article En | MEDLINE | ID: mdl-35489390

BACKGROUND: The patients with positive celiac disease (CeD) specific serology, but no evidence of intestinal inflammation are defined as potential celiac disease (PCeD) patients. About one-third of PCeD patients develop intestinal inflammation over time. The present study investigated the metabolome of small intestinal biopsies, blood plasma, and urine of patients with PCeD to understand the biochemical changes underlying the CeD. METHODS: The metabolic profiles of small intestinal biopsies, blood plasma, and urine of patients with PCeD (n = 7) were compared with CeD (n = 64) and controls (n = 15) [disease controls (DC) and healthy controls (HC)] using 1H NMR spectroscopy. RESULTS: The intestinal mucosa of PCeD showed lower levels of histidine, glycine, tyrosine, and tryptophan compared to DC. Altered levels of 6 metabolites (glucose, acetate, acetoacetate, ß-hydroxybutyrate, pyruvate, arginine) in blood plasma and two metabolites (succinate and aminohippurate) in urine were observed in PCeD compared to HC. The PLS-DA model built on the concentration of blood plasma showed separate clustering for PCeD and CeD patients. CONCLUSION: Altered metabolic profile of PCeD suggested that gluten intolerance was evident at the metabolic level before the intestinal damage. Altered energy metabolism and lower cytoprotective activity (histidine, glycine, arginine) indicated vulnerability to develop intestinal inflammation in PCeD over time. Our study may provide an insight into early biochemical processes of the progression of PCeD to CeD.


Celiac Disease , Arginine , Celiac Disease/metabolism , Glutens , Glycine , Histidine , Humans , Inflammation , Magnetic Resonance Spectroscopy , Pilot Projects
12.
Metabolites ; 12(4)2022 Mar 27.
Article En | MEDLINE | ID: mdl-35448482

A common malignancy that affects women is breast cancer. It is the second leading cause of cancer-related death among women. Metabolic reprogramming occurs during cancer growth, invasion, and metastases. Functional magnetic resonance (MR) methods comprising an array of techniques have shown potential for illustrating physiological and molecular processes changes before anatomical manifestations on conventional MR imaging. Among these, in vivo proton (1H) MR spectroscopy (MRS) is widely used for differentiating breast malignancy from benign diseases by measuring elevated choline-containing compounds. Further, the use of hyperpolarized 13C and 31P MRS enhanced the understanding of glucose and phospholipid metabolism. The metabolic profiling of an array of biological specimens (intact tissues, tissue extracts, and various biofluids such as blood, urine, nipple aspirates, and fine needle aspirates) can also be investigated through in vitro high-resolution NMR spectroscopy and high-resolution magic angle spectroscopy (HRMAS). Such studies can provide information on more metabolites than what is seen by in vivo MRS, thus providing a deeper insight into cancer biology and metabolism. The analysis of a large number of NMR spectral data sets through multivariate statistical methods classified the tumor sub-types. It showed enormous potential in the development of new therapeutic approaches. Recently, multiparametric MRI approaches were found to be helpful in elucidating the pathophysiology of cancer by quantifying structural, vasculature, diffusion, perfusion, and metabolic abnormalities in vivo. This review focuses on the applications of NMR, MRS, and MRI methods in understanding breast cancer biology and in the diagnosis and therapeutic monitoring of breast cancer.

13.
J Stroke Cerebrovasc Dis ; 31(4): 106349, 2022 Apr.
Article En | MEDLINE | ID: mdl-35152130

OBJECTIVES: Glycogen synthase kinase-3ß (GSK-3ß), a serine/threonine protein kinase, gets activated and worsen stroke outcome after ischemia/reperfusion (I/R) injury by inducing inflammation and apoptosis. In this study, tideglusib, a selective irreversible and non-ATP competitive inhibitor of GSK-3ß, was explored in cerebral I/R damage using middle cerebral artery occlusion (MCAo) model in rats. MATERIALS AND METHODS: MCAo was done for 90 min in male Wistar rats (250-280 g) using doccol suture. In pre-treatment group, tideglusib (50 mg/kg) was administered once daily for 2 days and on the day of surgery, 30 min before MCAo. Next day, rats were examined for neurobehavioral parameters and MRI was performed to assess brain damage. In post-treatment group, tideglusib was started at 30 min after MCAo and continued for the next 2 days. After 72 h of MCAo, behavioral parameters and brain damage by MRI were assessed. Further, oxidative stress markers (MDA and GSH), inflammatory cytokines (TNF-α, IL-1ß and IL-10) and expression levels of pGSK-3ß S9, Bcl-2 and Bax were estimated in pre-treatment group. RESULTS: Tideglusib pre-treatment but not post-treatment significantly improved neurobehavioral parameters (p < 0.05) and reduced brain damage (p < 0.01) when compared with MCAo group. I/R induced changes in MDA (p < 0.01), TNF-α and IL-1ß (p < 0.05) were significantly attenuated by pre-treatment. Further, tideglusib pre-treatment ameliorated MCAo induced altered expressions of pGSK-3ß S9, Bcl-2 and Bax. CONCLUSION: The results of our exploratory study indicated prophylactic potential of tideglusib in I/R injury by modulating pGSK-3ß S9, apoptosis and neuro-inflammation.


Ischemic Stroke , Reperfusion Injury , Animals , Apoptosis , Glycogen Synthase Kinase 3 beta , Humans , Infarction, Middle Cerebral Artery/diagnostic imaging , Infarction, Middle Cerebral Artery/drug therapy , Male , Rats , Rats, Wistar , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Thiadiazoles
14.
Neurol Res ; 44(5): 403-414, 2022 May.
Article En | MEDLINE | ID: mdl-34882069

OBJECTIVES: In ischemic stroke, reperfusion after thrombolysis is associated with secondary brain damage. Dihydromyricetin (DHM), a flavonoid, has shown neuroprotective effects through anti-oxidant, anti-inflammatory and anti-apoptotic properties. This study investigates the potential of DHM, given postreperfusion in middle cerebral artery occlusion (MCAo) model of stroke in rats. METHODS: MCAo surgery was performed in male Wistar rats. Reperfusion was performed after 90 min of ischemia. DHM (50 and 100 mg/kg) was administered 10-15 min and 2 h postreperfusion followed by daily dosing for 2 more days. Neurobehavioral parameters and infarct size (TTC staining) were assessed after 72 h. The effective dose (100 mg/kg) was then used to study reduction in infarct size (measured by MRI) and effect on apoptosis (evaluated by protein expression of Bax, Bcl-2 and cleaved caspase-3 and TUNEL assay) in peri-infarct cortex. Furthermore, effects of DHM on neuronal damage and activation of astrocytes were studied by immunofluorescence. RESULTS: Poststroke DHM (100 mg/kg) administered for 3 days showed significant improvements in motor-coordination and infarct damage (TTC staining and MRI). MCAo-induced altered apoptotic proteins were normalized to a significant extent in peri-infarct cortex with DHM treatment. Data from TUNEL assay were complementary to the effects on apoptotic proteins. Additionally, DHM caused a significant reduction in the number of reactive astrocytes when compared with the MCAo group. DISCUSSION: This study demonstrated the efficacy of subacute DHM treatment in ischemia/reperfusion injury by modulating apoptosis and astrogliosis in the peri-infarct cortex. This suggests the potential of DHM in attenuating disease progression.


Brain Ischemia , Neuroprotective Agents , Reperfusion Injury , Animals , Apoptosis , Brain Ischemia/complications , Brain Ischemia/drug therapy , Cerebral Cortex , Disease Models, Animal , Flavonols , Gliosis , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Male , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Rats , Rats, Wistar , Reperfusion Injury/metabolism
15.
Science ; 374(6570): 995-999, 2021 Nov 19.
Article En | MEDLINE | ID: mdl-34648303

Delhi, the national capital of India, experienced multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreaks in 2020 and reached population seropositivity of >50% by 2021. During April 2021, the city became overwhelmed by COVID-19 cases and fatalities, as a new variant, B.1.617.2 (Delta), replaced B.1.1.7 (Alpha). A Bayesian model explains the growth advantage of Delta through a combination of increased transmissibility and reduced sensitivity to immune responses generated against earlier variants (median estimates: 1.5-fold greater transmissibility and 20% reduction in sensitivity). Seropositivity of an employee and family cohort increased from 42% to 87.5% between March and July 2021, with 27% reinfections, as judged by increased antibody concentration after a previous decline. The likely high transmissibility and partial evasion of immunity by the Delta variant contributed to an overwhelming surge in Delhi.


COVID-19/epidemiology , COVID-19/virology , Genome, Viral , Adolescent , Adult , COVID-19/immunology , COVID-19/transmission , Child , Humans , Immune Evasion , India/epidemiology , Molecular Epidemiology , Phylogeny , Reinfection , Seroepidemiologic Studies , Young Adult
16.
Mol Neurobiol ; 58(12): 6121-6135, 2021 Dec.
Article En | MEDLINE | ID: mdl-34453687

Exploring and repurposing a drug have become a lower risk alternative. Safinamide, approved for Parkinson's disease, has shown neuroprotection in various animal models of neurological disorders. The present study aimed to explore the potential of safinamide in cerebral ischemia/reperfusion (I/R) in rats. Sprague-Dawley rats were used in middle cerebral artery occlusion model of stroke. The effective dose of safinamide was selected based on the results of neurobehavioral parameters and reduction in infarct size assessed 24 h post-reperfusion. For sub-acute study, the treatment with effective dose was extended for 3 days and effects on neurobehavioral parameters, infarct size (TTC staining and MRI), oxidative stress parameters (MDA, GSH, SOD, NOX-2), inflammatory cytokines (TNF-α, IL-1ß, IL-10), apoptosis (Bax, Bcl-2, cleaved caspase-3 expression, and TUNEL staining), and autophagy (pAMPK, Beclin-1, LC3-II expression) were studied. The results of dose selection study showed significant reduction (p < 0.05) in infarct size and improvement in neurobehavioral parameters with safinamide (80 mg/kg). In sub-acute study, safinamide showed significant (p < 0.05) improvement in motor coordination and infarct size reduction. Additionally, safinamide treatment significantly normalized altered redox homeostasis and inflammatory cytokine levels. However, no change was observed in expression of NOX-2 in I/R or safinamide treatment group when compared with sham. I/R induced deranged expression of apoptotic markers and increased TUNEL positive cells in cortex were significantly normalized with safinamide treatment. Further, safinamide significantly (p < 0.05) induced the expressions of autophagic proteins (Beclin-1 and LC3-II) in cortex. Overall, the results demonstrated neuroprotective potential of safinamide via anti-oxidant, anti-inflammatory, anti-apoptotic, and autophagy inducing properties. Thus, safinamide can be explored for repurposing in ischemic stroke after further exploration.


Alanine/analogs & derivatives , Apoptosis/drug effects , Autophagy/drug effects , Benzylamines/therapeutic use , Infarction, Middle Cerebral Artery/drug therapy , Neuroprotective Agents/therapeutic use , Stroke/drug therapy , Alanine/pharmacology , Alanine/therapeutic use , Animals , Benzylamines/pharmacology , Brain/drug effects , Brain/metabolism , Cytokines/metabolism , Disease Models, Animal , Infarction, Middle Cerebral Artery/metabolism , Male , Motor Activity/drug effects , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Stroke/metabolism
17.
Heliyon ; 7(5): e07114, 2021 May.
Article En | MEDLINE | ID: mdl-34113732

The southernmost region of earth, Antarctica, has world's most challenging environments. Those who live for long time and work in Antarctic stations are subjected to environmental stresses such as cold weather, photoperiod variations leading to disrupted sleep cycles, constrained living spaces, dry air, non-availability of fresh food items, and high electromagnetic radiations, psychological factors, such as geographical and social isolation, etc. All these factors have a significant impact on the human body. The present study investigated the impact of Antarctica harsh environment on human physiology and its metabolic processes by evaluating urine metabolome, using 1H NMR spectroscopy and analyzing certain physiological and clinical parameters for correlation with physiological expression data and metabolite results. Two study groups - before Antarctic exposure (B) and after Antarctic exposure (E), consisting of 11 subjects, exposed to one-month summer expedition, were compared. 35 metabolites in urine samples were identified from the 700 MHz 1H NMR spectra from where integral intensity of 22 important metabolites was determined. Univariate analysis indicated significant decrease in the levels of citrate and creatinine in samples collected post-expedition. Multivariate analysis was also performed using 1H NMR spectroscopy, because independent metabolite abundances may complement each other in predicting the dependent variables. 10 metabolites were identified among the groups; the OPLS-DA and VIP score indicated variation in appearance of metabolites over different time periods with insignificant change in the intensities. Metabolite results illustrate the impact of environmental stress or altered life style including the diet with absence of fresh fruits and vegetables, on the pathophysiology of the human health. Metabolic adaptation to Antarctic environmental stressors may help to highlight the effect of short-term physiological status and provide important information during Antarctic expeditions to formulate management programmes.

18.
Nucl Med Commun ; 42(7): 738-746, 2021 Jul 01.
Article En | MEDLINE | ID: mdl-33741857

PURPOSE: Development of a novel theranostic radiopharmaceutical for estrogen receptor, expressing unresectable primary and metastatic breast cancers. METHODS: Tamoxifen was radiolabeled with Rhenium-188 (Re-188) through tricarbonyl core. Radiolabeled complex was characterized by 1proton nuclear magnetic resonance spectroscopy and Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF). Various quality control tests such as sterility, apyrogenicity, and radiochemical purity (RCP) were performed to assess the suitability of the radiopharmaceutical for intravenous administration. In-vitro cell culture studies were performed for cytotoxic assessment. In addition to this, exposure due to different doses of Re-188-tricarbonyl tamoxifen was also calculated. RESULTS: Re-188-tricarbonyl and Re-188-tricarbonyl tamoxifen showed more than 99% RCP. Sample was found to be sterile and pyrogens levels were within the permissible limit. Re-188-tricarbonyl tamoxifen was successfully characterized by MALDI-TOF and 1H-NMR spectroscopy. Re-188 (1.480 MBq) and tamoxifen (0.027 or 0.054 µM) individually showed 36 and 70% cell death, respectively. However, radiolabeled complex (Re-188-tricarbonyl tamoxifen) with the same amount of radioactivity (1.480 MBq) increased the cell death to more than 90% with one-fifth to one-tenth molar concentration of tamoxifen (0.0054 µM). CONCLUSION: Re-188-tricarbonyl tamoxifen can be synthesized in-house in radiopharmacy lab. Radionuclide therapy with Re-188-tricarbonyl tamoxifen can be given using 10 times less amount of tamoxifen as compared to cold tamoxifen.


Radioisotopes , Rhenium , Tamoxifen , Humans , Radiopharmaceuticals
19.
Life Sci ; 267: 118975, 2021 Feb 15.
Article En | MEDLINE | ID: mdl-33387580

AIMS: Poly (ADP-ribose) polymerase- (PARP)-1 is predominantly triggered by DNA damage. Overexpression of PARP-1 is known for its association with the pathogenesis of several CNS disorders, such as Stroke, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington (HD) and Amyotrophic lateral sclerosis (ALS). NAD+ depletion resulted PARP related cell death only happened when the trial used extreme high oxidization treatment. Inhibition of PARP1/2 may induce replication related cell death due to un-repaired DNA damage. This review has discussed PARP-1 modulated downstream pathways in neurodegeneration and various FDA approved PARP-1 inhibitors. MATERIALS AND METHODS: A systematic literature review of PubMed, Medline, Bentham, Scopus and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on mechanistic role of Poly (ADP-ribose) polymerase and its inhibition in Neurodegenerative diseases. KEY FINDINGS: Several researchers have put forward number of potential treatments, of which PARP-1 enzyme has been regarded as a potent target intended for the handling of neurodegenerative ailments. Targeting PARP using its chemical inhibitors in various neurodegenerative may have therapeutic outcomes by reducing neuronal death mediated by PARPi. Numerous PARP-1 inhibitors have been studied in neurodegenerative diseases but they haven't been clinically evaluated. SIGNIFICANCE: In this review, the pathological role of PARP-1 in various neurodegenerative diseases has been discussed along with the therapeutic role of PARP-1 inhibitors in various neurodegenerative diseases.


Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/enzymology , Poly (ADP-Ribose) Polymerase-1/metabolism , Animals , Central Nervous System Diseases/drug therapy , Central Nervous System Diseases/metabolism , Humans , Molecular Targeted Therapy , Neurodegenerative Diseases/metabolism , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
...