Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 241: 124582, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37116843

RESUMEN

In the past few decades, substantial advancement has been made in nucleic acid (NA)-based therapies. Promising treatments include mRNA, siRNA, miRNA, and anti-sense DNA for treating various clinical disorders by modifying the expression of DNA or RNA. However, their effectiveness is limited due to their concentrated negative charge, instability, large size, and host barriers, which make widespread application difficult. The effective delivery of these medicines requires safe vectors that are efficient & selective while having non-pathogenic qualities; thus, nanomaterials have become an attractive option with promising possibilities despite some potential setbacks. Nanomaterials possess ideal characteristics, allowing them to be tuned into functional bio-entity capable of targeted delivery. In this review, current breakthroughs in the non-viral strategy of delivering NAs are discussed with the goal of overcoming challenges that would otherwise be experienced by therapeutics. It offers insight into a wide variety of existing NA-based therapeutic modalities and techniques. In addition to this, it provides a rationale for the use of non-viral vectors and a variety of nanomaterials to accomplish efficient gene therapy. Further, it discusses the potential for biomedical application of nanomaterials-based gene therapy in various conditions, such as cancer therapy, tissue engineering, neurological disorders, and infections.


Asunto(s)
Terapia Genética , Sistema de Administración de Fármacos con Nanopartículas , Nanoestructuras , Ácidos Nucleicos , Animales , Humanos , Dendrímeros/química , Estabilidad de Medicamentos , Terapia Genética/métodos , Hidrogeles/química , Liposomas/química , Nanoestructuras/administración & dosificación , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Ácidos Nucleicos/administración & dosificación , Ácidos Nucleicos/genética , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/uso terapéutico , Transfección
2.
Bone Rep ; 8: 46-56, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29955622

RESUMEN

Osteoporosis is one of the most important but often neglected bone disease associated with aging and postmenopausal condition leading to bone loss and fragility. Probiotics have been associated with various immunomodulatory properties and have the potential to ameliorate several inflammatory conditions including osteoporosis. Lactobacillus acidophilus (LA) was selected as probiotic of choice in our present study due its common availability and established immunomodulatory properties. In the present study, we report for the first time that administration of LA in ovariectomized (ovx) mice enhances both trabecular and cortical bone microarchitecture along with increasing the mineral density and heterogeneity of bones. This effect of LA administration is due to its immunomodulatory effect on host immune system. LA thus skews the Treg-Th17 cell balance by inhibiting osteoclastogenic Th17 cells and promoting anti-osteoclastogenic Treg cells in ovx mice. LA administration also suppressed expression of osteoclastogenic factors (IL-6, IL-17, TNF-α and RANKL) and increased expression of anti-osteoclastogenic factors (IL-10, IFN-γ). Taken together the present study for the first time clearly demonstrates the therapeutic potential of LA as an osteo-protective agent in enhancing bone health (via tweaking Treg-Th17 cell balance) in postmenopausal osteoporosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...