Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Syst ; 15(1): 49-62.e4, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38237551

RESUMEN

Synthetic minimal cells are a class of bioreactors that have some, but not all, functions of live cells. Here, we report a critical step toward the development of a bottom-up minimal cell: cellular export of functional protein and RNA products. We used cell-penetrating peptide tags to translocate payloads across a synthetic cell vesicle membrane. We demonstrated efficient transport of active enzymes and transport of nucleic acid payloads by RNA-binding proteins. We investigated influence of a concentration gradient alongside other factors on the efficiency of the translocation, and we show a method to increase product accumulation in one location. We demonstrate the use of this technology to engineer molecular communication between different populations of synthetic cells, to exchange protein and nucleic acid signals. The synthetic minimal cell production and export of proteins or nucleic acids allows experimental designs that approach the complexity and relevancy of natural biological systems. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Células Artificiales , Péptidos de Penetración Celular , Ácidos Nucleicos , Ácidos Nucleicos/metabolismo , Células Artificiales/metabolismo , Proteínas , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo
2.
Nat Commun ; 14(1): 2257, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37080970

RESUMEN

Biological computation is becoming a viable and fast-growing alternative to traditional electronic computing. Here we present a biocomputing technology called Trumpet: Transcriptional RNA Universal Multi-Purpose GatE PlaTform. Trumpet combines the simplicity and robustness of the simplest in vitro biocomputing methods, adding signal amplification and programmability, while avoiding common shortcomings of live cell-based biocomputing solutions. We have demonstrated the use of Trumpet to build all universal Boolean logic gates. We have also built a web-based platform for designing Trumpet gates and created a primitive processor by networking several gates as a proof-of-principle for future development. The Trumpet offers a change of paradigm in biocomputing, providing an efficient and easily programmable biological logic gate operating system.


Asunto(s)
Computadores Moleculares , Lógica , Tecnología
3.
J Biol Eng ; 17(1): 4, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36691081

RESUMEN

BACKGROUND: Efficient cell-free protein expression from linear DNA templates has remained a challenge primarily due to template degradation. In addition, the yields of transcription in cell-free systems lag behind transcriptional efficiency of live cells. Most commonly used in vitro translation systems utilize T7 RNA polymerase, which is also the enzyme included in many commercial kits. RESULTS: Here we present characterization of a variant of T7 RNA polymerase promoter that acts to significantly increase the yields of gene expression within in vitro systems. We have demonstrated that T7Max increases the yield of translation in many types of commonly used in vitro protein expression systems. We also demonstrated increased protein expression yields from linear templates, allowing the use of T7Max driven expression from linear templates. CONCLUSIONS: The modified promoter, termed T7Max, recruits standard T7 RNA polymerase, so no protein engineering is needed to take advantage of this method. This technique could be used with any T7 RNA polymerase- based in vitro protein expression system.

4.
PLoS One ; 17(4): e0266272, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35390057

RESUMEN

Cell-free protein expression is increasingly becoming popular for biotechnology, biomedical and research applications. Among cell-free systems, the most popular one is based on Escherichia coli (E. coli). Endogenous nucleases in E. coli cell-free transcription-translation (TXTL) degrade the free ends of DNA, resulting in inefficient protein expression from linear DNA templates. RecBCD is a nuclease complex that plays a major role in nuclease activity in E. coli, with the RecB subunit possessing the actual nuclease activity. We created a RecB knockout of an E. coli strain optimized for cell-free expression. We named this new strain Akaby. We demonstrated that Akaby TXTL successfully reduced linear DNA degradations, rescuing the protein expression efficiency from the linear DNA templates. The practicality of Akaby for TXTL is an efficient, simple alternative for linear template expression in cell-free reactions. We also use this work as a model protocol for modifying the TXTL source E. coli strain, enabling the creation of TXTL systems with other custom modifications.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Sistema Libre de Células/metabolismo , ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonucleasa V/metabolismo
6.
Elife ; 102021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34927583

RESUMEN

Employing concepts from physics, chemistry and bioengineering, 'learning-by-building' approaches are becoming increasingly popular in the life sciences, especially with researchers who are attempting to engineer cellular life from scratch. The SynCell2020/21 conference brought together researchers from different disciplines to highlight progress in this field, including areas where synthetic cells are having socioeconomic and technological impact. Conference participants also identified the challenges involved in designing, manipulating and creating synthetic cells with hierarchical organization and function. A key conclusion is the need to build an international and interdisciplinary research community through enhanced communication, resource-sharing, and educational initiatives.


Asunto(s)
Células Artificiales , Bioingeniería/métodos , Bioingeniería/estadística & datos numéricos , Bioingeniería/tendencias , Colaboración Intersectorial , Orgánulos/fisiología , Biología Sintética/tendencias , Predicción , Humanos
7.
ACS Synth Biol ; 10(12): 3264-3277, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34851109

RESUMEN

Agricultural productivity relies on synthetic nitrogen fertilizers, yet half of that reactive nitrogen is lost to the environment. There is an urgent need for alternative nitrogen solutions to reduce the water pollution, ozone depletion, atmospheric particulate formation, and global greenhouse gas emissions associated with synthetic nitrogen fertilizer use. One such solution is biological nitrogen fixation (BNF), a component of the complex natural nitrogen cycle. BNF application to commercial agriculture is currently limited by fertilizer use and plant type. This paper describes the identification, development, and deployment of the first microbial product optimized using synthetic biology tools to enable BNF for corn (Zea mays) in fertilized fields, demonstrating the successful, safe commercialization of root-associated diazotrophs and realizing the potential of BNF to replace and reduce synthetic nitrogen fertilizer use in production agriculture. Derived from a wild nitrogen-fixing microbe isolated from agricultural soils, Klebsiella variicola 137-1036 ("Kv137-1036") retains the capacity of the parent strain to colonize corn roots while increasing nitrogen fixation activity 122-fold in nitrogen-rich environments. This technical milestone was then commercialized in less than half of the time of a traditional biological product, with robust biosafety evaluations and product formulations contributing to consumer confidence and ease of use. Tested in multi-year, multi-site field trial experiments throughout the U.S. Corn Belt, fields grown with Kv137-1036 exhibited both higher yields (0.35 ± 0.092 t/ha ± SE or 5.2 ± 1.4 bushels/acre ± SE) and reduced within-field yield variance by 25% in 2018 and 8% in 2019 compared to fields fertilized with synthetic nitrogen fertilizers alone. These results demonstrate the capacity of a broad-acre BNF product to fix nitrogen for corn in field conditions with reliable agronomic benefits.


Asunto(s)
Grano Comestible , Fijación del Nitrógeno , Agricultura , Productos Agrícolas , Grano Comestible/química , Fertilizantes/análisis , Nitrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...