Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Insects ; 14(10)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37887794

RESUMEN

Natural habitats adjacent to vineyards are presumed to have a positive effect on the diversity of natural enemies within the vineyards. However, these habitats differ in vegetation structure and seasonal phenology and in turn could affect the species composition of natural enemies. Here, we compared the species richness and diversity and the composition of spider assemblages in several locations within three commercial vineyards and the nearby natural habitats in a Mediterranean landscape in northern Israel. We sampled spiders by means of pitfall traps in early and in late summer. Both the time in the season and the habitat (natural versus vineyard) affected spider species richness and diversity. More species were found in early summer (47) than in late summer (33), and more occurred in the natural habitat (34 species) than in the vineyards (27-31 species). Fifteen species were found exclusively in the natural habitat, and only 11 species were shared by the vineyards and natural habitat, four of which were the most abundant and geographically widely distributed species in the samples. In late summer, spider diversity in the natural habitat was higher than within the vineyards: the spider assemblages in the vineyards became dominated by a few species late in the crop season, while those of the natural habitat remained stable. Overall, the natural habitat differed in assemblage composition from all within-vineyard locations, while the three locations within the vineyard did not differ significantly in assemblage composition. Season (early vs. late summer), however, significantly affected the spider assemblage composition. This study documents the large diversity of spiders in a local Mediterranean vineyard agroecosystem. Over 60% of the known spider families in the region occurred in our samples, highlighting the importance of this agroecosystem for spider diversity and the potential for conservation biocontrol, where natural habitats may be a source of natural enemies for nearby vineyards.

2.
Ecology ; 100(9): e02782, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31170312

RESUMEN

Within food webs, vectors of plant pathogens interact with individuals of other species across multiple trophic levels, including predators, competitors, and mutualists. These interactions may in turn affect vector-borne pathogens by altering vector fitness and behavior. Predators, for example, consume vectors and reduce their abundance, but often spur movement of vectors as they seek to avoid predation. However, a general framework to predict how species interactions affect vectors of plant pathogens, and the resulting spread of vector-borne pathogens, is lacking. Here we developed a mathematical model to assess whether interactions such as predation, competition, and mutualism affected the spread of vector-borne plant pathogens with nonpersistent or persistent transmission modes. We considered transmission mode because interactions affecting vector-host encounter rates were expected to most strongly affect nonpersistent pathogens that are transmitted with short feeding bouts; interactions that affect vector feeding duration were expected to most strongly affect persistent pathogens that require long feeding bouts for transmission. Our results show that interactions that affected vector behavior (feeding duration, vector-host encounter rates) substantially altered rates of spread for vector-borne plant pathogens, whereas those affecting vector fitness (births, deaths) had relatively small effects. These effects of species interactions were largely independent of transmission mode, except when interactions affected vector-host encounter rates, where effects were strongest for nonpersistent pathogens. Our results suggest that a better understanding of how vectors interact with other species within food webs could enhance our understanding of disease ecology.


Asunto(s)
Ecología , Insectos Vectores , Animales , Modelos Teóricos , Enfermedades de las Plantas , Conducta Predatoria
3.
Pest Manag Sci ; 74(8): 1837-1844, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29488688

RESUMEN

BACKGROUND: Mating disruption (MD) employs high doses of a pest's synthetic sex pheromone in agricultural plots, to interfere with its reproduction. MD is assumed to have few behavioral effects on non-target arthropods, because sex pheromones are highly species-specific and non-toxic. Nevertheless, some natural enemies use their host's sex pheromones as foraging cues, and thus may be attracted to MD plots. To investigate this hypothesis, we compared parasitoid and spider assemblages in paired plots in five Israeli vineyards during 2015. One plot was MD-treated against two key pests, Lobesia botrana (Denis & Schiffermüller) and Planococcus ficus (Signoret). Both plots were insecticide-treated as needed. Natural enemies were suction-sampled and collected from pheromone-baited monitoring traps. RESULTS: The total abundance, species diversity and species composition of most natural enemies were unaffected by MD. An important exception involved P. ficus' main parasitoid, Anagyrus sp. nr. pseudococci (Girault). Anagyrus sp. nr. pseudococci females were mainly captured in control plots, while male captures were low and not influenced by MD. Parasitized P. ficus occurred only in MD plots. CONCLUSION: Non-target effects of MD involved mostly A. sp. nr. pseudococci females and hardly affected other natural enemies. These findings support the use of MD as an environmentally friendly pest management strategy. © 2018 Society of Chemical Industry.


Asunto(s)
Hemípteros/fisiología , Mariposas Nocturnas/fisiología , Control Biológico de Vectores , Conducta Sexual Animal , Arañas/fisiología , Vitis , Avispas/fisiología , Animales , Biodiversidad , Femenino , Israel , Masculino , Atractivos Sexuales/farmacología , Vitis/crecimiento & desarrollo
4.
Res Microbiol ; 168(1): 94-101, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27602526

RESUMEN

The planthopper Hyalesthes obsoletus (Hemiptera: Cixiidae) is an important vector of phytoplasma diseases in grapevine. In the current study, the bacterial community compositions of symbionts of this insect were examined. Two dominant bacterial lineages were identified by mass sequencing: the obligate symbiont Candidatus Sulcia, and a facultative symbiont that is closely related to Pectobacterium sp. and to BEV, a cultivable symbiont of another phytoplasma vector, the leafhopper Euscelidius variegatus. In addition, one bacterium was successfully isolated in this study - a member of the family Xanthomonadaceae that is most closely related to the genus Dyella. This Dyella-like bacterium (DLB) was detected by FISH analysis in H. obsoletus guts but not ovaries, and its prevalence in H. obsoletus increased during the fall, suggesting that it was acquired by the host through feeding. We found that DLB inhibits Spiroplasma melliferum, a cultivable relative of phytoplasma, suggesting that it is a potential candidate for biological control against phytoplasma in grapevines.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Hemípteros/microbiología , Insectos Vectores/microbiología , Simbiosis , Animales , Bacterias/genética , Bacterias/crecimiento & desarrollo , Proteínas Bacterianas/genética , Análisis por Conglomerados , Filogenia , Homología de Secuencia
5.
Microb Ecol ; 69(1): 204-14, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25135816

RESUMEN

Sap-feeding insects harbor diverse microbial endosymbionts that play important roles in host ecology and evolution, including contributing to host pest status. The vine mealybug, Planococcus ficus, is a serious pest of grapevines, vectoring a number of pathogenic grape viruses. Previous studies have shown that virus transmission is abolished when mealybugs are raised in the laboratory on potato. To examine the possible role of microbial symbionts in virus transmission, the archaeal, bacterial, and fungal microbiota of field and laboratory P. ficus were characterized using molecular and classical microbiological methods. Lab and field colonies of P. ficus harbored different microbiota. While both were dominated by the bacterial obligate nutritional symbionts Moranella and Tremblaya, field samples also harbored a third bacterium that was allied with cluster L, a lineage of bacterial symbionts previously identified in aphids. Archaea were not found in any of the samples. Fungal communities in field-collected mealybugs were dominated by Metschnikowia and Cladosporium species, while those from laboratory-reared mealybugs were dominated by Alternaria and Cladosporium species. In conclusion, this study has identified a diverse set of microbes, most of which appear to be facultatively associated with P. ficus, depending on environmental conditions. The role of various members of the mealybug microbiome, as well as how the host plant affects microbial community structure, remains to be determined.


Asunto(s)
Hemípteros/microbiología , Animales
6.
Dev Growth Differ ; 48(8): 537-48, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17026717

RESUMEN

In this study we describe the growth of several different larval cohorts (i.e. half-siblings of the same mother born on the same day) of a rare, xeric-adapted salamander Salamandra s. infraimmaculata Martens, 1885, under constant density and food conditions from birth to metamorphosis. The larvae spend the critical first phase of their lives in water, mostly in temporary ponds. Age and weight at metamorphosis were highly affected by varying food conditions. We have identified six different growth modes that these larvae use, both fast growing and slow growing. Each larval cohort was found to use 2-4 different such growth modes regardless of their initial weight. Fast growing modes (I-III) will enable larvae to survive dry years, and metamorphose bigger. Slow growing modes (IV-VI), used by 8% of the larval population, will enable survival only in rainy years. These last growth modes effect differential temporal dispersal in wet years by delaying the emergence of postmetamorphs onto land. Distribution of growth modes in the larval population is affected by food but not by density conditions. Late-born, fast-growing larvae will have an advantage in dry years being able to metamorphose and disperse, whereas the slow-growing larvae will survive only in wet years.


Asunto(s)
Adaptación Fisiológica/fisiología , Metamorfosis Biológica/fisiología , Urodelos/embriología , Animales , Larva/crecimiento & desarrollo
7.
J Chem Ecol ; 31(5): 1051-63, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-16124232

RESUMEN

Hyalesthes obsoletus Signoret (Homoptera: Cixiidae) is a polyphagous planthopper that transmits stolbur phytoplasma (a causative agent of "yellows" disease) to various weeds, members of the Solanaceae, and wine grapes (Vitis vinifera L.) in Europe and the Middle East. Planthoppers were collected by hand vacuuming eight native plant species. Vitex agnus-castus L., a shrub in the Verbenaceae, hosted the largest number of H. obsoletus, although Olea europaea L. also served as a host for adults. Using a Y-olfactometer, we compared the planthoppers relative preference for V. agnus-castus, Convolvulus arvensis, and V. vinifera. V. agnus-castus was more attractive to both male and female H. obsoletus than the other plants. H. obsoletus antennal response was stronger to volatiles collected from V. agnuscastus than from Cabernet Sauvignon variety of V. vinifera. To determine if V. agnus-castus would serve as a reservoir for the pathogen, H. obsoletus were collected from leaf and stem samples of native V. agnus-castus, and were tested by polymerase chain reaction (PCR) for the presence of phytoplasma DNA. While 14% and 25% (2003 and 2004, respectively) of the insects tested positive for phytoplasma DNA, none of the plant samples tested positive. To determine if V. agnus-castus could serve as a host plant for the development of the planthopper, we placed emergence cages beneath field shrubs and enclosed wild-caught H. obsoletus in a cage with a potted young shrub. We found adult H. obsoletus in the emergence cases and planthopper nymphs in the soil of the potted plant. We concluded that V. agnus-castus is attractive to H. obsoletus, which seems to be refractory to phytoplasma infections and warrants further testing as a trap plant near vineyards.


Asunto(s)
Insectos , Phytoplasma/patogenicidad , Vitex/química , Agricultura , Animales , ADN Bacteriano/análisis , Femenino , Control de Insectos , Masculino , Phytoplasma/genética , Enfermedades de las Plantas , Plantas Comestibles , Vitex/microbiología , Vitis , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...