Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 278
2.
J Exp Med ; 221(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38411617

In vivo T cell screens are a powerful tool for elucidating complex mechanisms of immunity, yet there is a lack of consensus on the screen design parameters required for robust in vivo screens: gene library size, cell transfer quantity, and number of mice. Here, we describe the Framework for In vivo T cell Screens (FITS) to provide experimental and analytical guidelines to determine optimal parameters for diverse in vivo contexts. As a proof-of-concept, we used FITS to optimize the parameters for a CD8+ T cell screen in the B16-OVA tumor model. We also included unique molecular identifiers (UMIs) in our screens to (1) improve statistical power and (2) track T cell clonal dynamics for distinct gene knockouts (KOs) across multiple tissues. These findings provide an experimental and analytical framework for performing in vivo screens in immune cells and illustrate a case study for in vivo T cell screens with UMIs.


CD8-Positive T-Lymphocytes , Animals , Mice , Gene Knockout Techniques
3.
Immunity ; 57(2): 223-244, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38354702

Immune responses must be tightly regulated to ensure both optimal protective immunity and tolerance. Costimulatory pathways within the B7:CD28 family provide essential signals for optimal T cell activation and clonal expansion. They provide crucial inhibitory signals that maintain immune homeostasis, control resolution of inflammation, regulate host defense, and promote tolerance to prevent autoimmunity. Tumors and chronic pathogens can exploit these pathways to evade eradication by the immune system. Advances in understanding B7:CD28 pathways have ushered in a new era of immunotherapy with effective drugs to treat cancer, autoimmune diseases, infectious diseases, and transplant rejection. Here, we discuss current understanding of the mechanisms underlying the coinhibitory functions of CTLA-4, PD-1, PD-L1:B7-1 and PD-L2:RGMb interactions and less studied B7 family members, including HHLA2, VISTA, BTNL2, and BTN3A1, as well as their overlapping and unique roles in regulating immune responses, and the therapeutic potential of these insights.


Autoimmune Diseases , CD28 Antigens , Humans , CD28 Antigens/metabolism , Friends , T-Lymphocytes , CTLA-4 Antigen/metabolism , Immunotherapy , B7-1 Antigen/metabolism , Immunoglobulins/metabolism , Butyrophilins/metabolism , Antigens, CD/metabolism
4.
Sci Immunol ; 9(91): eadh0152, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-38181095

Immune tolerance is maintained in lymphoid organs (LOs). Despite the presence of complex immune cell networks in non-LOs, it is unknown whether self-tolerance is maintained in these tissues. We developed a technique to restrict genetic recombination to regulatory T cells (Tregs) only in skin. Selective depletion of skin Tregs resulted in T cell-mediated inflammation of hair follicles (HFs). Suppression did not rely on CTLA-4, but instead on high-affinity interleukin-2 (IL-2) receptor expression by skin Tregs, functioning exclusively in a cell-extrinsic manner. In a novel model of HF stem cell (HFSC)-driven autoimmunity, we reveal that skin Tregs immunologically protect the HFSC niche. Finally, we used spatial transcriptomics to identify aberrant IL-2 signaling at stromal-HF interfaces in a rare form of human alopecia characterized by HFSC destruction and alopecia areata. Collectively, these results reveal the fundamental biology of Tregs in skin uncoupled from the systemic pool and elucidate a mechanism of self-tolerance.


Immune Privilege , T-Lymphocytes, Regulatory , Humans , Hair Follicle , Interleukin-2 , Stem Cell Niche
5.
Nat Immunol ; 25(1): 178-188, 2024 Jan.
Article En | MEDLINE | ID: mdl-38012416

Annotation of immunologic gene function in vivo typically requires the generation of knockout mice, which is time consuming and low throughput. We previously developed CHimeric IMmune Editing (CHIME), a CRISPR-Cas9 bone marrow delivery system for constitutive, ubiquitous deletion of single genes. Here we describe X-CHIME, four new CHIME-based systems for modular and rapid interrogation of gene function combinatorially (C-CHIME), inducibly (I-CHIME), lineage-specifically (L-CHIME) or sequentially (S-CHIME). We use C-CHIME and S-CHIME to assess the consequences of combined deletion of Ptpn1 and Ptpn2, an embryonic lethal gene pair, in adult mice. We find that constitutive deletion of both PTPN1 and PTPN2 leads to bone marrow hypoplasia and lethality, while inducible deletion after immune development leads to enteritis and lethality. These findings demonstrate that X-CHIME can be used for rapid mechanistic evaluation of genes in distinct in vivo contexts and that PTPN1 and PTPN2 have some functional redundancy important for viability in adult mice.


CRISPR-Cas Systems , Protein Tyrosine Phosphatase, Non-Receptor Type 2 , Mice , Animals , CRISPR-Cas Systems/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Mice, Knockout , Immune System , Gene Editing
6.
Clin Cancer Res ; 30(4): 803-813, 2024 02 16.
Article En | MEDLINE | ID: mdl-38060202

PURPOSE: Programmed cell death protein 1 (PD-1) expression on CD8+TIM-3-LAG-3- tumor-infiltrating cells predicts positive response to PD-1 blockade in metastatic clear-cell renal cell carcinoma (mccRCC). Because inhibition of PD-1 signaling in regulatory T cells (Treg) augments their immunosuppressive function, we hypothesized that PD-1 expression on tumor-infiltrating Tregs would predict resistance to PD-1 inhibitors. EXPERIMENTAL DESIGN: PD-1+ Tregs were phenotyped using multiparametric immunofluorescence in ccRCC tissues from the CheckMate-025 trial (nivolumab: n = 91; everolimus: n = 90). Expression of CD8, PD-1, TIM-3, and LAG-3 was previously determined (Ficial and colleagues, 2021). Clinical endpoints included progression-free survival (PFS), overall survival (OS), and objective response rate (ORR). RESULTS: In the nivolumab (but not everolimus) arm, high percentage of PD-1+ Tregs was associated with shorter PFS (3.19 vs. 5.78 months; P = 0.021), shorter OS (18.1 vs. 27.7 months; P = 0.013) and marginally lower ORR (12.5% vs. 31.3%; P = 0.059). An integrated biomarker (PD-1 Treg/CD8 ratio) was developed by calculating the ratio between percentage of PD-1+Tregs (marker of resistance) and percentage of CD8+PD-1+TIM-3-LAG-3- cells (marker of response). In the nivolumab (but not everolimus) arm, patients with high PD-1 Treg/CD8 ratio experienced shorter PFS (3.48 vs. 9.23 months; P < 0.001), shorter OS (18.14 vs. 38.21 months; P < 0.001), and lower ORR (15.69% vs. 40.00%; P = 0.009). Compared with the individual biomarkers, the PD-1 Treg/CD8 ratio showed improved ability to predict outcomes to nivolumab versus everolimus. CONCLUSIONS: PD-1 expression on Tregs is associated with resistance to PD-1 blockade in mccRCC, suggesting that targeting Tregs may synergize with PD-1 inhibition. A model that integrates PD-1 expression on Tregs and CD8+TIM-3-LAG-3- cells has higher predictive value.


Carcinoma, Renal Cell , Humans , Carcinoma, Renal Cell/pathology , Nivolumab/therapeutic use , T-Lymphocytes, Regulatory/metabolism , Hepatitis A Virus Cellular Receptor 2/metabolism , Everolimus/therapeutic use , Programmed Cell Death 1 Receptor/metabolism
7.
J Allergy Clin Immunol ; 153(1): 28-41, 2024 01.
Article En | MEDLINE | ID: mdl-37778472

Regulatory T cells expressing the transcription factor forkhead box protein 3 mediate peripheral immune tolerance both to self-antigens and to the commensal flora. Their defective function due to inborn errors of immunity or acquired insults is associated with a broad range of autoimmune and immune dysregulatory diseases. Although their function in suppressing autoimmunity and enforcing commensalism is established, a broader role for regulatory T cells in tissue repair and metabolic regulation has emerged, enabled by unique programs of tissue adaptability and specialization. In this review, we focus on the myriad roles played by regulatory T cells in immunologic tolerance and host homeostasis and the potential to harness these cells in novel therapeutic approaches to human diseases.


Autoimmune Diseases , Immune System Diseases , Humans , T-Lymphocytes, Regulatory , Immune Tolerance , Immune System Diseases/metabolism , Autoimmunity , Forkhead Transcription Factors
8.
Cancer Discov ; 13(12): 2566-2583, 2023 12 12.
Article En | MEDLINE | ID: mdl-37728660

The tumor microenvironment (TME) restricts antitumor CD8+ T-cell function and immunotherapy responses. Cancer cells compromise the metabolic fitness of CD8+ T cells within the TME, but the mechanisms are largely unknown. Here we demonstrate that one-carbon (1C) metabolism is enhanced in T cells in an antigen-specific manner. Therapeutic supplementation of 1C metabolism using formate enhances CD8+ T-cell fitness and antitumor efficacy of PD-1 blockade in B16-OVA tumors. Formate supplementation drives transcriptional alterations in CD8+ T-cell metabolism and increases gene signatures for cellular proliferation and activation. Combined formate and anti-PD-1 therapy increases tumor-infiltrating CD8+ T cells, which are essential for enhanced tumor control. Our data demonstrate that formate provides metabolic support to CD8+ T cells reinvigorated by anti-PD-1 to overcome a metabolic vulnerability in 1C metabolism in the TME to further improve T-cell function. SIGNIFICANCE: This study identifies that deficiencies in 1C metabolism limit the efficacy of PD-1 blockade in B16-OVA tumors. Supplementing 1C metabolism with formate during anti-PD-1 therapy enhances CD8+ T-cell fitness in the TME and CD8+ T-cell-mediated tumor clearance. These findings demonstrate that formate supplementation can enhance exhausted CD8+ T-cell function. See related commentary by Lin et al., p. 2507. This article is featured in Selected Articles from This Issue, p. 2489.


Neoplasms , Programmed Cell Death 1 Receptor , Humans , Programmed Cell Death 1 Receptor/metabolism , CD8-Positive T-Lymphocytes/metabolism , Neoplasms/genetics , Formates , Dietary Supplements , Tumor Microenvironment
9.
Cell Chem Biol ; 30(9): 1064-1075.e8, 2023 09 21.
Article En | MEDLINE | ID: mdl-37716347

Mitochondrial biogenesis initiates within hours of T cell receptor (TCR) engagement and is critical for T cell activation, function, and survival; yet, how metabolic programs support mitochondrial biogenesis during TCR signaling is not fully understood. Here, we performed a multiplexed metabolic chemical screen in CD4+ T lymphocytes to identify modulators of metabolism that impact mitochondrial mass during early T cell activation. Treatment of T cells with pyrvinium pamoate early during their activation blocks an increase in mitochondrial mass and results in reduced proliferation, skewed CD4+ T cell differentiation, and reduced cytokine production. Furthermore, administration of pyrvinium pamoate at the time of induction of experimental autoimmune encephalomyelitis, an experimental model of multiple sclerosis in mice, prevented the onset of clinical disease. Thus, modulation of mitochondrial biogenesis may provide a therapeutic strategy for modulating T cell immune responses.


Encephalomyelitis, Autoimmune, Experimental , Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , T-Lymphocytes , Lymphocyte Activation , Receptors, Antigen, T-Cell , CD4-Positive T-Lymphocytes
10.
Exp Mol Med ; 55(9): 1913-1921, 2023 09.
Article En | MEDLINE | ID: mdl-37696895

Our bodies are inhabited by trillions of microorganisms. The host immune system constantly interacts with the microbiota in barrier organs, including the intestines. Over decades, numerous studies have shown that our mucosal immune system is dynamically shaped by a variety of microbiota-derived signals. Elucidating the mediators of these interactions is an important step for understanding how the microbiota is linked to mucosal immune homeostasis and gut-associated diseases. Interestingly, the efficacy of cancer immunotherapies that manipulate costimulatory and coinhibitory pathways has been correlated with the gut microbiota. Moreover, adverse effects of these therapies in the gut are linked to dysregulation of the intestinal immune system. These findings suggest that costimulatory pathways in the immune system might serve as a bridge between the host immune system and the gut microbiota. Here, we review mechanisms by which commensal microorganisms signal immune cells and their potential impact on costimulation. We highlight how costimulatory pathways modulate the mucosal immune system through not only classical antigen-presenting cells but also innate lymphocytes, which are highly enriched in barrier organs. Finally, we discuss the adverse effects of immune checkpoint inhibitors in the gut and the possible relationship with the gut microbiota.


Gastrointestinal Microbiome , Microbiota , Immunotherapy , Immune System , Immunity, Innate
11.
J Exp Med ; 220(10)2023 10 02.
Article En | MEDLINE | ID: mdl-37432393

Immune-related adverse events (irAEs) are a notable complication of PD-1 cancer immunotherapy. A better understanding of how these iatrogenic diseases compare with naturally arising autoimmune diseases is needed for treatment and monitoring of irAEs. We identified differences in anti-PD-1-induced type 1 diabetes (T1D) and spontaneous T1D in non-obese diabetic (NOD) mice by performing single-cell RNA-seq and TCR-seq on T cells from the pancreas, pancreas-draining lymph node (pLN), and blood of mice with PD-1-induced T1D or spontaneous T1D. In the pancreas, anti-PD-1 resulted in expansion of terminally exhausted/effector-like CD8+ T cells, an increase in T-bethi CD4+FoxP3- T cells, and a decrease in memory CD4+FoxP3- and CD8+ T cells in contrast to spontaneous T1D. Notably, anti-PD-1 caused increased TCR sharing between the pancreas and the periphery. Moreover, T cells in the blood of anti-PD-1-treated mice expressed markers that differed from spontaneous T1D, suggesting that the blood may provide a window to monitor irAEs rather than relying exclusively on the autoimmune target organ.


Diabetes Mellitus, Type 1 , Animals , Mice , Mice, Inbred NOD , Pancreas , Forkhead Transcription Factors , Receptors, Antigen, T-Cell
13.
Nature ; 619(7969): 348-356, 2023 Jul.
Article En | MEDLINE | ID: mdl-37344597

The role of B cells in anti-tumour immunity is still debated and, accordingly, immunotherapies have focused on targeting T and natural killer cells to inhibit tumour growth1,2. Here, using high-throughput flow cytometry as well as bulk and single-cell RNA-sequencing and B-cell-receptor-sequencing analysis of B cells temporally during B16F10 melanoma growth, we identified a subset of B cells that expands specifically in the draining lymph node over time in tumour-bearing mice. The expanding B cell subset expresses the cell surface molecule T cell immunoglobulin and mucin domain 1 (TIM-1, encoded by Havcr1) and a unique transcriptional signature, including multiple co-inhibitory molecules such as PD-1, TIM-3, TIGIT and LAG-3. Although conditional deletion of these co-inhibitory molecules on B cells had little or no effect on tumour burden, selective deletion of Havcr1 in B cells both substantially inhibited tumour growth and enhanced effector T cell responses. Loss of TIM-1 enhanced the type 1 interferon response in B cells, which augmented B cell activation and increased antigen presentation and co-stimulation, resulting in increased expansion of tumour-specific effector T cells. Our results demonstrate that manipulation of TIM-1-expressing B cells enables engagement of the second arm of adaptive immunity to promote anti-tumour immunity and inhibit tumour growth.


B-Lymphocytes , Melanoma , Animals , Mice , B-Lymphocytes/cytology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Lymphocyte Activation , Melanoma/immunology , Melanoma/pathology , Melanoma/prevention & control , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Flow Cytometry , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Lymph Nodes/cytology , Lymph Nodes/immunology , Antigen Presentation , Receptors, Antigen, B-Cell/genetics , Single-Cell Gene Expression Analysis , Tumor Burden , Interferon Type I
14.
Nature ; 617(7960): 377-385, 2023 05.
Article En | MEDLINE | ID: mdl-37138075

The gut microbiota is a crucial regulator of anti-tumour immunity during immune checkpoint inhibitor therapy. Several bacteria that promote an anti-tumour response to immune checkpoint inhibitors have been identified in mice1-6. Moreover, transplantation of faecal specimens from responders can improve the efficacy of anti-PD-1 therapy in patients with melanoma7,8. However, the increased efficacy from faecal transplants is variable and how gut bacteria promote anti-tumour immunity remains unclear. Here we show that the gut microbiome downregulates PD-L2 expression and its binding partner repulsive guidance molecule b (RGMb) to promote anti-tumour immunity and identify bacterial species that mediate this effect. PD-L1 and PD-L2 share PD-1 as a binding partner, but PD-L2 can also bind RGMb. We demonstrate that blockade of PD-L2-RGMb interactions can overcome microbiome-dependent resistance to PD-1 pathway inhibitors. Antibody-mediated blockade of the PD-L2-RGMb pathway or conditional deletion of RGMb in T cells combined with an anti-PD-1 or anti-PD-L1 antibody promotes anti-tumour responses in multiple mouse tumour models that do not respond to anti-PD-1 or anti-PD-L1 alone (germ-free mice, antibiotic-treated mice and even mice colonized with stool samples from a patient who did not respond to treatment). These studies identify downregulation of the PD-L2-RGMb pathway as a specific mechanism by which the gut microbiota can promote responses to PD-1 checkpoint blockade. The results also define a potentially effective immunological strategy for treating patients who do not respond to PD-1 cancer immunotherapy.


Drug Resistance, Neoplasm , Immunotherapy , Melanoma , Microbiota , Animals , Humans , Mice , Cell Adhesion Molecules, Neuronal , Disease Models, Animal , Down-Regulation , Drug Resistance, Neoplasm/drug effects , Fecal Microbiota Transplantation , Germ-Free Life , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Melanoma/immunology , Melanoma/microbiology , Melanoma/therapy , Protein Binding/drug effects , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
15.
Trends Immunol ; 44(5): 326-328, 2023 05.
Article En | MEDLINE | ID: mdl-37031062

In a recent article, Puig-Saus et al. computationally predict and experimentally validate neoantigen-specific T cell responses in patients with melanoma. They identify a restricted set of neoantigens recognized by polyclonal CD8+ T cells as a unique feature of anti-PD-1 responders and engineer autologous tumor-responsive T cells expressing neoantigen-specific TCRs, providing proof-of-concept for future cellular therapies.


CD8-Positive T-Lymphocytes , Melanoma , Humans , Antigens, Neoplasm , Melanoma/therapy , Receptors, Antigen, T-Cell
16.
Mol Cell ; 83(8): 1340-1349.e7, 2023 04 20.
Article En | MEDLINE | ID: mdl-37084714

The glycerol-3-phosphate shuttle (G3PS) is a major NADH shuttle that regenerates reducing equivalents in the cytosol and produces energy in the mitochondria. Here, we demonstrate that G3PS is uncoupled in kidney cancer cells where the cytosolic reaction is ∼4.5 times faster than the mitochondrial reaction. The high flux through cytosolic glycerol-3-phosphate dehydrogenase (GPD) is required to maintain redox balance and support lipid synthesis. Interestingly, inhibition of G3PS by knocking down mitochondrial GPD (GPD2) has no effect on mitochondrial respiration. Instead, loss of GPD2 upregulates cytosolic GPD on a transcriptional level and promotes cancer cell proliferation by increasing glycerol-3-phosphate supply. The proliferative advantage of GPD2 knockdown tumor can be abolished by pharmacologic inhibition of lipid synthesis. Taken together, our results suggest that G3PS is not required to run as an intact NADH shuttle but is instead truncated to support complex lipid synthesis in kidney cancer.


Glycerol-3-Phosphate Dehydrogenase (NAD+) , Kidney Neoplasms , Lipids , Humans , Glycerol/metabolism , Glycerol-3-Phosphate Dehydrogenase (NAD+)/genetics , Glycerol-3-Phosphate Dehydrogenase (NAD+)/metabolism , Glycerolphosphate Dehydrogenase/genetics , Glycerolphosphate Dehydrogenase/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Lipids/biosynthesis , NAD/metabolism , Oxidation-Reduction , Phosphates/metabolism
17.
Proc Natl Acad Sci U S A ; 120(6): e2219199120, 2023 02 07.
Article En | MEDLINE | ID: mdl-36724255

Immune checkpoint blockers (ICBs) have failed in all phase III glioblastoma trials. Here, we found that ICBs induce cerebral edema in some patients and mice with glioblastoma. Through single-cell RNA sequencing, intravital imaging, and CD8+ T cell blocking studies in mice, we demonstrated that this edema results from an inflammatory response following antiprogrammed death 1 (PD1) antibody treatment that disrupts the blood-tumor barrier. Used in lieu of immunosuppressive corticosteroids, the angiotensin receptor blocker losartan prevented this ICB-induced edema and reprogrammed the tumor microenvironment, curing 20% of mice which increased to 40% in combination with standard of care treatment. Using a bihemispheric tumor model, we identified a "hot" tumor immune signature prior to losartan+anti-PD1 therapy that predicted long-term survival. Our findings provide the rationale and associated biomarkers to test losartan with ICBs in glioblastoma patients.


Glioblastoma , Animals , Mice , Glioblastoma/pathology , Losartan/pharmacology , Losartan/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , CD8-Positive T-Lymphocytes , Edema , Tumor Microenvironment
18.
Curr Opin Immunol ; 80: 102283, 2023 02.
Article En | MEDLINE | ID: mdl-36709596

Immune checkpoint receptors such as programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte associated protein 4 (CTLA-4), lymphocyte-activation gene 3 (LAG-3), and T cell immunoglobulin and ITIM domain (TIGIT) have distinct and overlapping inhibitory functions that regulate Tcell activation, differentiation, and function. These inhibitory receptors also mediate tolerance, and dysregulation of these receptors can result in a breach of tolerance and the development of autoimmune syndromes. Similarly, antibody blockade of immune checkpoint receptors or their ligands for cancer immunotherapy may trigger a spectrum of organ inflammation that resembles autoimmunity, termed immune-related adverse events (irAE). In this review, we discuss recent advances in the regulation of autoimmunity by immune checkpoint receptors. We highlight coordinated gene expression programs linking checkpoint receptors, heterogeneity within autoreactive T-cell populations, parallels between irAE and autoimmunity, and bidirectional functional interactions between immune checkpoint receptors and their ligands.


Immune System Diseases , Neoplasms , Humans , Autoimmunity , Ligands , CTLA-4 Antigen , Immunotherapy , T-Lymphocytes , Receptors, Immunologic/metabolism , Immune System Diseases/metabolism
19.
Cell Metab ; 35(1): 36-55, 2023 01 03.
Article En | MEDLINE | ID: mdl-36473467

Aging results in remodeling of T cell immunity and is associated with poor clinical outcomes in age-related diseases such as cancer. Among the hallmarks of aging, changes in host and cellular metabolism critically affect the development, maintenance, and function of T cells. Although metabolic perturbations impact anti-tumor T cell responses, the link between age-associated metabolic dysfunction and anti-tumor immunity remains unclear. In this review, we summarize recent advances in our understanding of aged T cell metabolism, with a focus on the bioenergetic and immunologic features of T cell subsets unique to the aging process. We also survey insights into mechanisms of metabolic T cell dysfunction in aging and discuss the impacts of aging on the efficacy of cancer immunotherapy. As the average life expectancy continues to increase, understanding the interplay between age-related metabolic reprogramming and maladaptive T cell immunity will be instrumental for the development of therapeutic strategies for older patients.


Neoplasms , T-Lymphocyte Subsets , Humans , Aged , T-Lymphocyte Subsets/metabolism , Energy Metabolism , Immunotherapy/methods , Neoplasms/pathology , Tumor Microenvironment
20.
J Allergy Clin Immunol ; 151(2): 526-538.e8, 2023 02.
Article En | MEDLINE | ID: mdl-35963455

BACKGROUND: Neutrophilic asthma is associated with disease severity and corticosteroid insensitivity. Novel therapies are required to manage this life-threatening asthma phenotype. Programmed cell death protein-1 (PD-1) is a key homeostatic modulator of the immune response for T-cell effector functions. OBJECTIVE: We sought to investigate the role of PD-1 in the regulation of acute neutrophilic inflammation in a murine model of airway hyperreactivity (AHR). METHODS: House dust mite was used to induce and compare neutrophilic AHR in wild-type and PD-1 knockout mice. Then, the therapeutic potential of a human PD-1 agonist was tested in a humanized mouse model in which the PD-1 extracellular domain is entirely humanized. Single-cell RNA sequencing and flow cytometry were mainly used to investigate molecular and cellular mechanisms. RESULTS: PD-1 was highly induced on pulmonary T cells in our inflammatory model. PD-1 deficiency was associated with an increased neutrophilic AHR and high recruitment of inflammatory cells to the lungs. Consistently, PD-1 agonist treatment dampened AHR, decreased neutrophil recruitment, and modulated cytokine production in a humanized PD-1 mouse model. Mechanistically, we demonstrated at the transcriptional and protein levels that the inhibitory effect of PD-1 agonist is associated with the reprogramming of pulmonary effector T cells that showed decreased number and activation. CONCLUSIONS: PD-1 agonist treatment is efficient in dampening neutrophilic AHR and lung inflammation in a preclinical humanized mouse model.


Asthma , Programmed Cell Death 1 Receptor , Humans , Animals , Mice , Programmed Cell Death 1 Receptor/metabolism , Lung , Th2 Cells , Disease Models, Animal
...