Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Earth Space Chem ; 8(3): 483-498, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38533191

RESUMEN

Microbial ureolysis offers the potential to remove metals including Sr2+ as carbonate minerals via the generation of alkalinity coupled to NH4+ and HCO3- production. Here, we investigated the potential for bacteria, indigenous to sediments representative of the U.K. Sellafield nuclear site where 90Sr is present as a groundwater contaminant, to utilize urea in order to target Sr2+-associated (Ca)CO3 formation in sediment microcosm studies. Strontium removal was enhanced in most sediments in the presence of urea only, coinciding with a significant pH increase. Adding the biostimulation agents acetate/lactate, Fe(III), and yeast extract to further enhance microbial metabolism, including ureolysis, enhanced ureolysis and increased Sr and Ca removal. Environmental scanning electron microscopy analyses suggested that coprecipitation of Ca and Sr occurred, with evidence of Sr associated with calcium carbonate polymorphs. Sr K-edge X-ray absorption spectroscopy analysis was conducted on authentic Sellafield sediments stimulated with Fe(III) and quarry outcrop sediments amended with yeast extract. Spectra from the treated Sellafield and quarry sediments showed Sr2+ local coordination environments indicative of incorporation into calcite and vaterite crystal structures, respectively. 16S rRNA gene analysis identified ureolytic bacteria of the genus Sporosarcina in these incubations, suggesting they have a key role in enhancing strontium removal. The onset of ureolysis also appeared to enhance the microbial reduction of Fe(III), potentially via a tight coupling between Fe(III) and NH4+ as an electron donor for metal reduction. This suggests ureolysis may support the immobilization of 90Sr via coprecipitation with insoluble calcium carbonate and cofacilitate reductive precipitation of certain redox active radionuclides, e.g., uranium.

2.
Environ Res ; 242: 117667, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37980994

RESUMEN

Vivianite (Fe3(PO4)2·8H2O), a sink for phosphorus, is a key mineralization product formed during the microbial reduction of phosphate-containing Fe(III) minerals in natural systems, and also in wastewater treatment where Fe(III)-minerals are used to remove phosphate. As biovivianite is a potentially useful Fe and P fertiliser, there is much interest in harnessing microbial biovivianite synthesis for circular economy applications. In this study, we investigated the factors that influence the formation of microbially-synthesized vivianite (biovivianite) under laboratory batch systems including the presence and absence of phosphate and electron shuttle, the buffer system, pH, and the type of Fe(III)-reducing bacteria (comparing Geobacter sulfurreducens and Shewanella putrefaciens). The rate of Fe(II) production, and its interactions with the residual Fe(III) and other oxyanions (e.g., phosphate and carbonate) were the main factors that controlled the rate and extent of biovivianite formation. Higher concentrations of phosphate (e.g., P/Fe = 1) in the presence of an electron shuttle, at an initial pH between 6 and 7, were needed for optimal biovivianite formation. Green rust, a key intermediate in biovivianite production, could be detected as an endpoint alongside vivianite and metavivianite (Fe2+Fe3+2(PO4)2.(OH)2.6H2O), in treatments with G. sulfurreducens and S. putrefaciens. However, XRD indicated that vivianite abundance was higher in experiments containing G. sulfurreducens, where it dominated. This study, therefore, shows that vivianite formation can be controlled to optimize yield during microbial processing of phosphate-loaded Fe(III) materials generated from water treatment processes.


Asunto(s)
Compuestos Férricos , Compuestos Ferrosos , Shewanella putrefaciens , Oxidación-Reducción , Fosfatos , Minerales
3.
Biofouling ; 39(8): 785-799, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37877442

RESUMEN

Nuclear facility discharge pipelines accumulate inorganic and microbial fouling and radioactive contamination, however, research investigating the mechanisms that lead to their accumulation is limited. Using the Sellafield discharge pipeline as a model system, this study utilised modified Robbins devices to investigate the potential interplay between inorganic and biological processes in supporting fouling formation and radionuclide uptake. Initial experiments showed polyelectrolytes (present in pipeline effluents), had minimal effects on fouling formation. Biofilms were, however, found to be the key component promoting fouling, leading to increased uptake of inorganic particulates and metal contaminants (Cs, Sr, Co, Eu and Ru) compared to a non-biofilm control system. Biologically-mediated uptake mechanisms were implicated in Co and Ru accumulation, with a potential bioreduced Ru species identified on the biofilm system. This research emphasised the key role of biofilms in promoting fouling in discharge pipelines, advocating for the use of biocide treatments methods.


Asunto(s)
Incrustaciones Biológicas , Desinfectantes , Biopelículas , Incrustaciones Biológicas/prevención & control , Transporte Biológico , Metales , Membranas Artificiales
4.
ACS ES T Water ; 3(10): 3223-3234, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37854271

RESUMEN

Historical operations at nuclear mega-facilities such as Hanford, USA, and Sellafield, UK have led to a legacy of radioactivity-contaminated land. Calcium phosphate phases (e.g., hydroxyapatite) can adsorb and/or incorporate radionuclides, including 90Sr. Past work has shown that aqueous injection of Ca-phosphate-generating solutions into the contaminated ground on both laboratory and field scales can reduce the amount of aqueous 90Sr in the systems. Here, two microbially mediated phosphate amendment techniques which precipitated Ca-phosphate, (i) Ca-citrate/Na-phosphate and (ii) glycerol phosphate, were tested in batch experiments alongside an abiotic treatment ((iii) polyphosphate), using stable Sr and site relevant groundwaters and sediments. All three amendments led to enhanced Sr removal from the solution compared to the sediment-only control. The Ca-citrate/Na-phosphate treatment removed 97%, glycerol phosphate 60%, and polyphosphate 55% of the initial Sr. At experimental end points, scanning electron microscopy showed that Sr-containing, Ca-phosphate phases were deposited on sediment grains, and XAS analyses of the sediments amended with Ca-citrate/Na-phosphate and glycerol phosphate confirmed Sr incorporation into Ca-phosphates occurred. Overall, Ca-phosphate-generating treatments have the potential to be applied in a range of nuclear sites and are a key option within the toolkit for 90Sr groundwater remediation.

5.
Sci Total Environ ; 862: 160862, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36521613

RESUMEN

Uranium dioxide (UO2) and metaschoepite (UO3•nH2O) particles have been identified as contaminants at nuclear sites. Understanding their behavior and impact is crucial for safe management of radioactively contaminated land and to fully understand U biogeochemistry. The Savannah River Site (SRS) (South Carolina, USA), is one such contaminated site, following historical releases of U-containing wastes to the vadose zone. Here, we present an insight into the behavior of these two particle types under dynamic conditions representative of the SRS, using field lysimeters (15 cm D x 72 cm L). Discrete horizons containing the different particle types were placed at two depths in each lysimeter (25 cm and 50 cm) and exposed to ambient rainfall for 1 year, with an aim of understanding the impact of dynamic, shallow subsurface conditions on U particle behavior and U migration. The dissolution and migration of U from the particle sources and the speciation of U throughout the lysimeters was assessed after 1 year using a combination of sediment digests, sequential extractions, and bulk and µ-focus X-ray spectroscopy. In the UO2 lysimeter, oxidative dissolution of UO2 and subsequent migration of U was observed over 1-2 cm in the direction of waterflow and against it. Sequential extractions of the UO2 sources suggest they were significantly altered over 1 year. The metaschoepite particles also showed significant dissolution with marginally enhanced U migration (several cm) from the sources. However, in both particle systems the released U was quantitively retained in sediment as a range of different U(IV) and U(VI) phases, and no detectable U was measured in the lysimeter effluent. The study provides a useful insight into U particle behavior in representative, real-world conditions relevant to the SRS, and highlights limited U migration from particle sources due to secondary reactions with vadose zone sediments over 1 year.


Asunto(s)
Uranio , Contaminantes Radiactivos del Agua , Contaminantes Radiactivos del Agua/análisis , Uranio/análisis , Análisis Espectral , Ríos , South Carolina , Oxidación-Reducción
6.
Environ Sci Technol ; 56(24): 17643-17652, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36449568

RESUMEN

Over 60 years of nuclear activity have resulted in a global legacy of contaminated land and radioactive waste. Uranium (U) is a significant component of this legacy and is present in radioactive wastes and at many contaminated sites. U-incorporated iron (oxyhydr)oxides may provide a long-term barrier to U migration in the environment. However, reductive dissolution of iron (oxyhydr)oxides can occur on reaction with aqueous sulfide (sulfidation), a common environmental species, due to the microbial reduction of sulfate. In this work, U(VI)-goethite was initially reacted with aqueous sulfide, followed by a reoxidation reaction, to further understand the long-term fate of U species under fluctuating environmental conditions. Over the first day of sulfidation, a transient release of aqueous U was observed, likely due to intermediate uranyl(VI)-persulfide species. Despite this, overall U was retained in the solid phase, with the formation of nanocrystalline U(IV)O2 in the sulfidized system along with a persistent U(V) component. On reoxidation, U was associated with an iron (oxyhydr)oxide phase either as an adsorbed uranyl (approximately 65%) or an incorporated U (35%) species. These findings support the overarching concept of iron (oxyhydr)oxides acting as a barrier to U migration in the environment, even under fluctuating redox conditions.


Asunto(s)
Hierro , Uranio , Hierro/química , Oxidación-Reducción , Óxidos , Sulfuros , Uranio/química
7.
Sci Total Environ ; 834: 155332, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35460788

RESUMEN

Selenium (Se) is a toxic contaminant with multiple anthropogenic sources, including 79Se from nuclear fission. Se mobility in the geosphere is generally governed by its oxidation state, therefore understanding Se speciation under variable redox conditions is important for the safe management of Se contaminated sites. Here, we investigate Se behavior in sediment groundwater column systems. Experiments were conducted with environmentally relevant Se concentrations, using a range of groundwater compositions, and the impact of electron-donor (i.e., biostimulation) and groundwater sulfate addition was examined over a period of 170 days. X-Ray Absorption Spectroscopy and standard geochemical techniques were used to track changes in sediment associated Se concentration and speciation. Electron-donor amended systems with and without added sulfate retained up to 90% of added Se(VI)(aq), with sediment associated Se speciation dominated by trigonal Se(0) and possibly trace Se(-II); no Se colloid formation was observed. The remobilization potential of the sediment associated Se species was then tested in reoxidation and seawater intrusion perturbation experiments. In all treatments, sediment associated Se (i.e., trigonal Se(0)) was largely resistant to remobilization over the timescale of the experiments (170 days). However, in the perturbation experiments, less Se was remobilized from sulfidic sediments, suggesting that previous sulfate-reducing conditions may buffer Se against remobilization and migration.


Asunto(s)
Agua Subterránea , Selenio , Contaminantes Radiactivos del Agua , Sedimentos Geológicos/química , Agua Subterránea/química , Oxidación-Reducción , Selenio/química , Sulfatos , Contaminantes Radiactivos del Agua/química
8.
J Hazard Mater ; 431: 128564, 2022 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-35359098

RESUMEN

Molybdenum (Mo) is a key trace element and a contaminant in many environments including mine tailings and acid mine drainage systems. Under oxic conditions Mo exists in a number of forms, including mono-molybdate (Mo(VI)O42-) and various poly-molybdate species (e.g. Mo(VI)7O246-) depending on the geochemical conditions (e.g. pH). The mobility and bioavailability of Mo is often controlled by sorption to mineral surfaces, including iron (oxyhydr)oxides e.g. hematite (Fe2O3). This study uses adsorption isotherms, PHREEQC geochemical modeling, Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR), and X-ray Absorption Spectroscopy (XAS) to holistically characterise the molecular scale adsorption of molybdate to hematite as a function of pH (3-12) and Mo(VI) concentration (0.01 × 10-4 - 2 × 10-3 M). PHREEQC and ATR-FTIR indicated both pH and Mo concentration are important variables when forming mono- vs. poly- molybdate and suggest low pH (≤ 4) and high Mo(VI) concentration (≥ 5 × 10-4 M) contribute to the formation of a poly-molybdate surface species on the hematite surface. XAS found Mo adsorbed to hematite via an inner-sphere corner-sharing bidentate binuclear complex with an octahedral mono-molybdate structure at a Mo concentration of 0.6 × 10-4 M across the pH range, and at a Mo(VI) concentration of 5 × 10-4 M and pH over 5. This is the first direct observation of octahedrally coordinated Mo(VI) adsorption species on hematite, and this information has broad implications for the mobility and transport of Mo as a contaminant in the environment.


Asunto(s)
Molibdeno , Adsorción , Compuestos Férricos , Concentración de Iones de Hidrógeno
9.
Langmuir ; 38(10): 3090-3097, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35226492

RESUMEN

Spent nuclear fuel contains both uranium (U) and high yield fission products, including strontium-90 (90Sr), a key radioactive contaminant at nuclear facilities. Both U and 90Sr will be present where spent nuclear fuel has been processed, including in storage ponds and tanks. However, the interactions between Sr and U phases under ambient conditions are not well understood. Over a pH range of 4-14, we investigate Sr sorption behavior in contact with two nuclear fuel cycle relevant U(IV) phases: nano-uraninite (UO2) and U(IV)-silicate nanoparticles. Nano-UO2 is a product of the anaerobic corrosion of metallic uranium fuel, and UO2 is also the predominant form of U in ceramic fuels. U(IV)-silicates form stable colloids under the neutral to alkaline pH conditions highly relevant to nuclear fuel storage ponds and geodisposal scenarios. In sorption experiments, Sr had the highest affinity for UO2, although significant Sr sorption also occurred to U(IV)-silicate phases at pH ≥ 6. Extended X-ray absorption fine structure (EXAFS) spectroscopy, transmission electron microscopy, and desorption data for the UO2 system suggested that Sr interacted with UO2 via a near surface, highly coordinated complex at pH ≥ 10. EXAFS measurements for the U(IV)-silicate samples showed outer-sphere Sr sorption dominated at acidic and near-neutral pH with intrinsic Sr-silicates forming at pH ≥ 12. These complex interactions of Sr with important U(IV) phases highlight a largely unrecognized control on 90Sr mobility in environments of relevance to spent nuclear fuel management and storage.

10.
Langmuir ; 38(8): 2576-2589, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35166554

RESUMEN

In the United Kingdom, decommissioning of legacy spent fuel storage facilities involves the retrieval of radioactive sludges that have formed as a result of corrosion of Magnox nuclear fuel. Retrieval of sludges may re-suspend a colloidal fraction of the sludge, thereby potentially enhancing the mobility of radionuclides including uranium. The colloidal properties of the layered double hydroxide (LDH) phase hydrotalcite, a key product of Magnox fuel corrosion, and its interactions with U(VI) are of interest. This is because colloidal hydrotalcite is a potential transport vector for U(VI) under the neutral-to-alkaline conditions characteristic of the legacy storage facilities and other nuclear decommissioning scenarios. Here, a multi-technique approach was used to investigate the colloidal stability of hydrotalcite and the U(VI) sorption mechanism(s) across pH 7-11.5 and with variable U(VI) surface loadings (0.01-1 wt %). Overall, hydrotalcite was found to form stable colloidal suspensions between pH 7 and 11.5, with some evidence for Mg2+ leaching from hydrotalcite colloids at pH ≤ 9. For systems with U present, >98% of U(VI) was removed from the solution in the presence of hydrotalcite, regardless of pH and U loading, although the sorption mode was affected by both pH and U concentrations. Under alkaline conditions, U(VI) surface precipitates formed on the colloidal hydrotalcite nanoparticle surface. Under more circumneutral conditions, Mg2+ leaching from hydrotalcite and more facile exchange of interlayer carbonate with the surrounding solution led to the formation of uranyl carbonate species (e.g., Mg(UO2(CO3)3)2-(aq)). Both X-ray absorption spectroscopy (XAS) and luminescence analysis confirmed that these negatively charged species sorbed as both outer- and inner-sphere tertiary complexes on the hydrotalcite surface. These results demonstrate that hydrotalcite can form pseudo-colloids with U(VI) under a wide range of pH conditions and have clear implications for understanding the uranium behavior in environments where hydrotalcite and other LDHs may be present.

11.
Environ Sci Technol ; 55(24): 16445-16454, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34882383

RESUMEN

Over 60 years of nuclear activities have resulted in a global legacy of radioactive wastes, with uranium considered a key radionuclide in both disposal and contaminated land scenarios. With the understanding that U has been incorporated into a range of iron (oxyhydr)oxides, these minerals may be considered a secondary barrier to the migration of radionuclides in the environment. However, the long-term stability of U-incorporated iron (oxyhydr)oxides is largely unknown, with the end-fate of incorporated species potentially impacted by biogeochemical processes. In particular, studies show that significant electron transfer may occur between stable iron (oxyhydr)oxides such as goethite and adsorbed Fe(II). These interactions can also induce varying degrees of iron (oxyhydr)oxide recrystallization (<4% to >90%). Here, the fate of U(VI)-incorporated goethite during exposure to Fe(II) was investigated using geochemical analysis and X-ray absorption spectroscopy (XAS). Analysis of XAS spectra revealed that incorporated U(VI) was reduced to U(V) as the reaction with Fe(II) progressed, with minimal recrystallization (approximately 2%) of the goethite phase. These results therefore indicate that U may remain incorporated within goethite as U(V) even under iron-reducing conditions. This develops the concept of iron (oxyhydr)oxides acting as a secondary barrier to radionuclide migration in the environment.


Asunto(s)
Compuestos Férricos , Compuestos de Hierro , Compuestos Ferrosos , Minerales , Oxidación-Reducción
12.
ACS Earth Space Chem ; 5(11): 3075-3086, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34825123

RESUMEN

Globally, the need for radioactive waste disposal and contaminated land management is clear. Here, gaining an improved understanding of how biogeochemical processes, such as Fe(III) and sulfate reduction, may control the environmental mobility of radionuclides is important. Uranium (U), typically the most abundant radionuclide by mass in radioactive wastes and contaminated land scenarios, may have its environmental mobility impacted by biogeochemical processes within the subsurface. This study investigated the fate of U(VI) in an alkaline (pH ∼9.6) sulfate-reducing enrichment culture obtained from a high-pH environment. To explore the mobility of U(VI) under alkaline conditions where iron minerals are ubiquitous, a range of conditions were tested, including high (30 mM) and low (1 mM) carbonate concentrations and the presence and absence of Fe(III). At high carbonate concentrations, the pH was buffered to approximately pH 9.6, which delayed the onset of sulfate reduction and meant that the reduction of U(VI)(aq) to poorly soluble U(IV)(s) was slowed. Low carbonate conditions allowed microbial sulfate reduction to proceed and caused the pH to fall to ∼7.5. This drop in pH was likely due to the presence of volatile fatty acids from the microbial respiration of gluconate. Here, aqueous sulfide accumulated and U was removed from solution as a mixture of U(IV) and U(VI) phosphate species. In addition, sulfate-reducing bacteria, such as Desulfosporosinus species, were enriched during development of sulfate-reducing conditions. Results highlight the impact of carbonate concentrations on U speciation and solubility in alkaline conditions, informing intermediate-level radioactive waste disposal and radioactively contaminated land management.

13.
Environ Sci Technol ; 55(23): 15862-15872, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34825817

RESUMEN

99Tc will be present in significant quantities in radioactive wastes including intermediate-level waste (ILW). The internationally favored concept for disposing of higher activity radioactive wastes including ILW is via deep geological disposal in an underground engineered facility located ∼200-1000 m deep. Typically, in the deep geological disposal environment, the subsurface will be saturated, cement will be used extensively as an engineering material, and iron will be ubiquitous. This means that understanding Tc biogeochemistry in high pH, cementitious environments is important to underpin safety case development. Here, alkaline sediment microcosms (pH 10) were incubated under anoxic conditions under "no added Fe(III)" and "with added Fe(III)" conditions (added as ferrihydrite) at three Tc concentrations (10-11, 10-6, and 10-4 mol L-1). In the 10-6 mol L-1 Tc experiments with no added Fe(III), ∼35% Tc(VII) removal occurred during bioreduction. Solvent extraction of the residual solution phase indicated that ∼75% of Tc was present as Tc(IV), potentially as colloids. In both biologically active and sterile control experiments with added Fe(III), Fe(II) formed during bioreduction and >90% Tc was removed from the solution, most likely due to abiotic reduction mediated by Fe(II). X-ray absorption spectroscopy (XAS) showed that in bioreduced sediments, Tc was present as hydrous TcO2-like phases, with some evidence for an Fe association. When reduced sediments with added Fe(III) were air oxidized, there was a significant loss of Fe(II) over 1 month (∼50%), yet this was coupled to only modest Tc remobilization (∼25%). Here, XAS analysis suggested that with air oxidation, partial incorporation of Tc(IV) into newly forming Fe oxyhydr(oxide) minerals may be occurring. These data suggest that in Fe-rich, alkaline environments, biologically mediated processes may limit Tc mobility.


Asunto(s)
Compuestos Férricos , Residuos Radiactivos , Sedimentos Geológicos , Hierro , Oxidación-Reducción , Espectroscopía de Absorción de Rayos X
15.
Nat Mater ; 20(12): 1677-1682, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34446864

RESUMEN

The physical properties of clays and micas can be controlled by exchanging ions in the crystal lattice. Atomically thin materials can have superior properties in a range of membrane applications, yet the ion-exchange process itself remains largely unexplored in few-layer crystals. Here we use atomic-resolution scanning transmission electron microscopy to study the dynamics of ion exchange and reveal individual ion binding sites in atomically thin and artificially restacked clays and micas. We find that the ion diffusion coefficient for the interlayer space of atomically thin samples is up to 104 times larger than in bulk crystals and approaches its value in free water. Samples where no bulk exchange is expected display fast exchange at restacked interfaces, where the exchanged ions arrange in islands with dimensions controlled by the moiré superlattice dimensions. We attribute the fast ion diffusion to enhanced interlayer expandability resulting from weaker interlayer binding forces in both atomically thin and restacked materials. This work provides atomic scale insights into ion diffusion in highly confined spaces and suggests strategies to design exfoliated clay membranes with enhanced performance.

16.
Chemosphere ; 276: 130117, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34088087

RESUMEN

Uranium (U) is a radionuclide of key environmental interest due its abundance by mass within radioactive waste and presence in contaminated land scenarios. Ubiquitously present iron (oxyhydr)oxide mineral phases, such as (nano)magnetite, have been identified as candidates for immobilisation of U via incorporation into the mineral structure. Studies of how biogeochemical processes, such as sulfidation from the presence of sulfate-reducing bacteria, may affect iron (oxyhydr)oxides and impact radionuclide mobility are important in order to underpin geological disposal of radioactive waste and manage radioactively contaminated land. Here, this study utilised a highly controlled abiotic method for sulfidation of U(V) incorporated into nanomagnetite to determine the fate and speciation of U. Upon sulfidation, transient release of U into solution occurred (∼8.6% total U) for up to 3 days, despite the highly reducing conditions. As the system evolved, lepidocrocite was observed to form over a period of days to weeks. After 10 months, XAS and geochemical data showed all U was partitioned to the solid phase, as both nanoparticulate uraninite (U(IV)O2) and a percentage of retained U(V). Further EXAFS analysis showed incorporation of the residual U(V) fraction into an iron (oxyhydr)oxide mineral phase, likely nanomagnetite or lepidocrocite. Overall, these results provide new insights into the stability of U(V) incorporated iron (oxyhydr)oxides during sulfidation, confirming the longer term retention of U in the solid phase under complex, environmentally relevant conditions.


Asunto(s)
Residuos Radiactivos , Uranio , Óxido Ferrosoférrico , Hierro , Oxidación-Reducción
17.
Chemosphere ; 273: 129550, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33508689

RESUMEN

Understanding the speciation and fate of radium during operational discharge from the offshore oil and gas industry into the marine environment is important in assessing its long term environmental impact. In the current work, 226Ra concentrations in marine sediments contaminated by produced water discharge from a site in the UK were analysed using gamma spectroscopy. Radium was present in field samples (0.1-0.3 Bq g-1) within International Atomic Energy Agency activity thresholds and was found to be primarily associated with micron sized radiobarite particles (≤2 µm). Experimental studies of synthetic/field produced water and seawater mixing under laboratory conditions showed that a significant proportion of radium (up to 97%) co-precipitated with barite confirming the radiobarite fate pathway. The results showed that produced water discharge into the marine environment results in the formation of radiobarite particles which incorporate a significant portion of radium and can be deposited in marine sediments.


Asunto(s)
Radio (Elemento) , Contaminantes Radiactivos del Agua , Industrias , Radio (Elemento)/análisis , Agua de Mar , Agua , Contaminantes Radiactivos del Agua/análisis
18.
Chemosphere ; 254: 126859, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32957279

RESUMEN

Understanding the long-term fate, stability, and bioavailability of uranium (U) in the environment is important for the management of nuclear legacy sites and radioactive wastes. Analysis of U behavior at natural analogue sites permits evaluation of U biogeochemistry under conditions more representative of long-term equilibrium. Here, we have used bulk geochemical and microbial community analysis of soils, coupled with X-ray absorption spectroscopy and µ-focus X-ray fluorescence mapping, to gain a mechanistic understanding of the fate of U transported into an organic-rich soil from a pitchblende vein at the UK Needle's Eye Natural Analogue site. U is highly enriched in the Needle's Eye soils (∼1600 mg kg-1). We show that this enrichment is largely controlled by U(VI) complexation with soil organic matter and not U(VI) bioreduction. Instead, organic-associated U(VI) seems to remain stable under microbially-mediated Fe(III)-reducing conditions. U(IV) (as non-crystalline U(IV)) was only observed at greater depths at the site (>25 cm); the soil here was comparatively mineral-rich, organic-poor, and sulfate-reducing/methanogenic. Furthermore, nanocrystalline UO2, an alternative product of U(VI) reduction in soils, was not observed at the site, and U did not appear to be associated with Fe-bearing minerals. Organic-rich soils appear to have the potential to impede U groundwater transport, irrespective of ambient redox conditions.


Asunto(s)
Agua Subterránea/química , Residuos Radiactivos/análisis , Suelo/química , Uranio/análisis , Contaminantes Radiactivos del Agua/análisis , Compuestos Férricos , Microbiología del Suelo , Uranio/química , Compuestos de Uranio/análisis , Espectroscopía de Absorción de Rayos X
19.
Environ Sci Technol ; 54(4): 2268-2276, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31934763

RESUMEN

As the dominant radionuclide by mass in many radioactive wastes, the control of uranium mobility in contaminated environments is of high concern. U speciation can be governed by microbial interactions, whereby metal-reducing bacteria are able to reduce soluble U(VI) to insoluble U(IV), providing a method for removal of U from contaminated groundwater. Although microbial U(VI) reduction is widely reported, the mechanism(s) for the transformation of U(VI) to relatively insoluble U(IV) phases are poorly understood. By combining a suite of analyses, including luminescence, U M4-edge high-energy resolved fluorescence detection-X-ray absorption near-edge structure (XANES), and U L3-edge XANES/extended X-ray absorption fine structure, we show that the microbial reduction of U(VI) by the model Fe(III)-reducing bacterium, Shewanella oneidensis MR1, proceeds via a single electron transfer to form a pentavalent U(V) intermediate which disproportionates to form U(VI) and U(IV). Furthermore, we have identified significant U(V) present in post reduction solid phases, implying that U(V) may be stabilized for up to 120.5 h.


Asunto(s)
Shewanella , Uranio , Biodegradación Ambiental , Compuestos Férricos , Oxidación-Reducción
20.
Environ Sci Technol ; 54(1): 129-136, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31838844

RESUMEN

Uranium is a risk-driving radionuclide in both radioactive waste disposal and contaminated land scenarios. In these environments, a range of biogeochemical processes can occur, including sulfate reduction, which can induce sulfidation of iron (oxyhydr)oxide mineral phases. During sulfidation, labile U(VI) is known to reduce to relatively immobile U(IV); however, the detailed mechanisms of the changes in U speciation during these biogeochemical reactions are poorly constrained. Here, we performed highly controlled sulfidation experiments at pH 7 and pH 9.5 on U(VI) adsorbed to ferrihydrite and investigated the system using geochemical analyses, X-ray absorption spectroscopy (XAS), and computational modeling. Analysis of the XAS data indicated the formation of a novel, transient U(VI)-persulfide complex as an intermediate species during the sulfidation reaction, concomitant with the transient release of uranium to the solution. Extended X-ray absorption fine structure (EXAFS) modeling showed that a persulfide ligand was coordinated in the equatorial plane of the uranyl moiety, and formation of this species was supported by computational modeling. The final speciation of U was nanoparticulate U(IV) uraninite, and this phase was evident at 2 days at pH 7 and 1 year at pH 9.5. Our identification of a new, labile U(VI)-persulfide species under environmentally relevant conditions may have implications for U mobility in sulfidic environments pertinent to radioactive waste disposal and contaminated land scenarios.


Asunto(s)
Hierro , Uranio , Oxidación-Reducción , Óxidos , Sulfuros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...