RESUMEN
Plasmodium vivax chloroquine resistance has been documented in nearly every region where this malaria-causing parasite is endemic. Unfortunately, P. vivax resistance surveillance and drug discovery are challenging due to the low parasitemias of patient isolates and poor parasite survival through ex vivo maturation that reduce the sensitivity and scalability of current P. vivax antimalarial assays. Using cryopreserved patient isolates from Brazil and fresh patient isolates from India, we established a robust enrichment method for P. vivax parasites. We next performed a medium screen for formulations that enhance ex vivo survival. Finally, we optimized an isotopic metabolic labeling assay for measuring P. vivax maturation and its sensitivity to antimalarials. A KCl Percoll density gradient enrichment method increased parasitemias from small-volume ex vivo isolates by an average of >40-fold. The use of Iscove's modified Dulbecco's medium for P. vivax ex vivo culture approximately doubled the parasite survival through maturation. Coupling these with [3H]hypoxanthine metabolic labeling permitted sensitive and robust measurements of parasite maturation, which was used to measure the sensitivities of Brazilian P. vivax isolates to chloroquine and several novel antimalarials. These techniques can be applied to rapidly and robustly assess the P. vivax isolate sensitivities to antimalarials for resistance surveillance and drug discovery.
Asunto(s)
Antimaláricos/farmacología , Cloroquina/farmacología , Pruebas de Sensibilidad Parasitaria/métodos , Plasmodium vivax/efectos de los fármacos , Brasil , Humanos , IndiaRESUMEN
Plasmodium vivax is the most geographically widespread malaria parasite. Unique features of transmission biology complicate P. vivax control. Interventions targeting transmission are required for malaria eradication. In the absence of an in vitro culture, transmission studies rely on live isolates from non-human primates or endemic regions. Here, we demonstrate P. vivax gametocytes from both India and Brazil are stable during cryopreservation. Importantly, cryopreserved gametocytes from Brazil were capable of infecting three anopheline mosquito species in feedings done in the United States. These findings create new opportunities for transmission studies in diverse locales.