Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 22166, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550139

RESUMEN

To control pyrethroid-resistant malaria vectors, Indoor Residual Spraying (IRS) and Long-Lasting Insecticidal Nets (LLINs) that include additional ingredients to pyrethroid are being developed. Same progress needs to be made to the pyrethroid-treated blankets, which are more compatible with shelter structures found in emergency settings such as displaced populations. In the current study, efficacy of blankets treated with permethrin and piperonyl butoxide (PBO) was evaluated against pyrethroid-resistant Anopheles gambiae sensu stricto. Efficacy was compared with that of Olyset LLIN, Olyset Plus LLIN and untreated blanket in terms of mortality and blood-feeding inhibition against pyrethroid-resistant Anopheles gambiae mosquitoes. The current study indicates that, in emergency shelters such as migrant and refugee camps where LLINs cannot be used, PBO-permethrin blankets may provide protection against resistant mosquitoes if widely used. No side effects related to the use of the treated blankets were reported from the participants. These results need validation in a large-scale field trial to assess the epidemiological impact of the intervention, durability and acceptability of this new vector control strategy for malaria vector control.


Asunto(s)
Anopheles , Mosquiteros Tratados con Insecticida , Insecticidas , Malaria , Piretrinas , Animales , Humanos , Piretrinas/farmacología , Permetrina/farmacología , Butóxido de Piperonilo/farmacología , Resistencia a los Insecticidas , Malaria/prevención & control , Mosquitos Vectores/fisiología , Insecticidas/farmacología , Control de Mosquitos/métodos
2.
Sci Rep ; 12(1): 22359, 2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-36572746

RESUMEN

Novel insecticides are urgently needed to control insecticide-resistant populations of Anopheles malaria vectors. Broflanilide acts as a non-competitive antagonist of the gamma-aminobutyric acid receptor and has shown prolonged effectiveness as an indoor residual spraying product (VECTRON T500) in experimental hut trials against pyrethroid-resistant vector populations. This multi-centre study expanded upon initial discriminating concentration testing of broflanilide, using six Anopheles insectary colonies (An. gambiae Kisumu KCMUCo, An. gambiae Kisumu NIMR, An. arabiensis KGB, An. arabiensis SENN, An. coluzzii N'Gousso and An. stephensi SK), representing major malaria vector species, to facilitate prospective susceptibility monitoring of this new insecticide; and investigated the potential for cross-resistance to broflanilide via the A296S mutation associated with dieldrin resistance (rdl). Across all vector species tested, the discriminating concentration for broflanilide ranged between LC99 × 2 = 1.126-54.00 µg/ml or LC95 × 3 = 0.7437-17.82 µg/ml. Lower concentrations of broflanilide were required to induce complete mortality of An. arabiensis SENN (dieldrin-resistant), compared to its susceptible counterpart, An. arabiensis KGB, and there was no association between the presence of the rdl mechanism of resistance and survival in broflanilide bioassays, demonstrating a lack of cross-resistance to broflanilide. Study findings provide a benchmark for broflanilide susceptibility monitoring as part of ongoing VECTRON T500 community trials in Tanzania and Benin.


Asunto(s)
Anopheles , Insecticidas , Malaria , Piretrinas , Animales , Insecticidas/farmacología , Anopheles/genética , Dieldrín/farmacología , Estudios Prospectivos , Salud Pública , Resistencia a los Insecticidas/genética , Mosquitos Vectores , Malaria/prevención & control , Piretrinas/farmacología , Control de Mosquitos
3.
Malar J ; 21(1): 183, 2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690824

RESUMEN

BACKGROUND: To sustain high universal Long-Lasting Insecticidal Nets (LLINs) coverage, affordable nets that provide equivalent or better protection than standard LLINs, are required. Test facilities evaluating new LLINs require compliance to Good Laboratory Practice (GLP) standards to ensure the quality and integrity of test data. Following GLP principles allows for the reconstruction of activities during the conduct of a study and minimizes duplication of efficacy testing. This case study evaluated the efficacy of two LLINs: SafeNet NF® and SafeNet® LLIN. METHODS: The study was conducted according to GLP principles and followed World Health Organization guidelines for evaluating LLINs. The LLINs were assessed in experimental huts against wild, pyrethroid-resistant Anopheles arabiensis mosquitoes. Nets were either unwashed or washed 20 times and artificially holed to simulate a used torn net. Blood-feeding inhibition and mortality were compared with a positive control (Interceptor® LLIN) and an untreated net. RESULTS: Mosquito entry in the huts was reduced compared to negative control for the unwashed SafeNet NF, washed Safenet LLIN and the positive control arms. Similar exiting rates were found for all the treatment arms. Significant blood-feeding inhibition was only found for the positive control, both when washed and unwashed. All insecticide treatments induced significantly higher mortality compared to an untreated net. Compared to the positive control, the washed and unwashed SafeNet NF® resulted in similar mortality. For the SafeNet® LLINs the unwashed net had an equivalent performance, but the mortality for the washed net was significantly lower than the positive control. Internal audits of the study confirmed that all critical phases complied with Standard Operating Procedures (SOPs) and the study plan. The external audit confirmed that the study complied with GLP standards. CONCLUSIONS: SafeNet NF® and SafeNet® LLIN offered equivalent protection to the positive control (Interceptor® LLIN). However, further research is needed to investigate the durability, acceptability, and residual efficacy of these nets in the community. This study demonstrated that GLP-compliant evaluation of LLINs can be successfully conducted by African research institutions.


Asunto(s)
Anopheles , Mosquiteros Tratados con Insecticida , Insecticidas , Piretrinas , Animales , Anopheles/fisiología , Resistencia a los Insecticidas , Insecticidas/farmacología , Control de Mosquitos/métodos , Mosquitos Vectores , Organización para la Cooperación y el Desarrollo Económico , Piretrinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA