Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37834594

RESUMEN

Organic phase-change materials (PCMs) hold promise in developing advanced thermoregulation and responsive energy systems owing to their high latent heat capacity and thermal reliability. However, organic PCMs are prone to leakages in the liquid state and, thus, are hardly applicable in their pristine form. Herein, we encapsulated organic PCM n-Octadecane into polyurethane capsules via polymerization of commercially available polymethylene polyphenylene isocyanate and polyethylene glycol at the interface oil-in-water emulsion and studied how various n-Octadecane feeding affected the shell formation, capsule structure, and latent heat storage properties. The successful shell polymerization and encapsulation of n-Octadecane dissolved in the oil core was verified by confocal microscopy and Fourier-transform infrared spectroscopy. The mean capsule size varied from 9.4 to 16.7 µm while the shell was found to reduce in thickness from 460 to 220 nm as the n-Octadecane feeding increased. Conversely, the latent heat storage capacity increased from 50 to 132 J/g corresponding to the growth in actual n-Octadecane content from 25% to 67% as revealed by differential scanning calorimetry. The actual n-Octadecane content increased non-linearly along with the n-Octadecane feeding and reached a plateau at 66-67% corresponded to 3.44-3.69 core-to-monomer ratio. Finally, the capsules with the reasonable combination of structural and thermal properties were evaluated as a thermoregulating additive to a commercially available paint.

2.
Proc Natl Acad Sci U S A ; 120(35): e2307618120, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37603762

RESUMEN

Corrosion is one of the major issues for sustainable manufacturing globally. The annual global cost of corrosion is US$2.5 trillion (approximately 3.4% of the world's GDP). The traditional ways of corrosion protection (such as barriers or inhibiting) are either not very effective (in the case of barrier protection) or excessively expensive (inhibiting). Here, we demonstrate a concept of nanoreactors, which are able to controllably release or adsorb protons or hydroxides directly on corrosion sites, hence, selectively regulating the corrosion reactions. A single nanoreactor comprises a nanocompartment wrapped around by a pH-sensing membrane represented, respectively, by a halloysite nanotube and a graphene oxide/polyamine envelope. A nanoreactor response is determined by the change of a signaling pH on a given corrosion site. The nanoreactors are self-assembled and suitable for mass-line production. The concept creates sustainable technology for developing smart anticorrosion coatings, which are nontoxic, selective, and inexpensive.

3.
Adv Mater ; 35(31): e2300403, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37161663

RESUMEN

Electron transport layers (ETLs) with pronounced electron conducting capability are essential for high performance planar perovskite photovoltaics, with the great challenge being that the most widely used metal oxide ETLs unfortunately have intrinsically low carrier mobility. Herein is demonstrated that by simply addressing the carrier loss at particle boundaries of TiO2 ETLs, through embedding in ETL p-n heterointerfaces, the electron mobility of the ETLs can be boosted by three orders of magnitude. Such embedding is encouragingly favorable for both inhibiting the formation of rutile phase TiO2 in ETL, and initiating the growth of high-quality perovskite films with less defect states. By virtue of these merits, creation of formamidinium lead iodide perovskite solar cells (PSCs) with a champion efficiency of 25.05% is achieved, setting a new benchmark for planar PSCs employing TiO2 ETLs. Unencapsulated PSCs deliver much-improved environmental stability, i.e., more than 80% of their initial efficiency after 9000 h of air storage under RH of 40%, and over 90% of their initial efficiency at maximum power point under continuous illumination for 500 h. Further work exploring other p-type nanocrystals for embedding warrants the proposed strategy as a universal alternative for addressing the low-carrier mobility of metal oxide based ETLs.

4.
J Colloid Interface Sci ; 638: 403-411, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36758253

RESUMEN

Biological systems possess unique non-equilibrium functions, maintaining tight manipulation of their surroundings through inter-communication of multiple components and self-regulatory capability organized over different length scales. However, most artificial materials are incapable of communicating and self-regulating behavior due to their limited number of component and direct responsive modes. Herein, a new integrated self-regulation system is developed utilizing stimuli-responsive polyelectrolyte capsules as building blocks. The combination of stimuli-responsive capsules and enzyme immobilized microgels is designed to mimic life systems and its programmable interactive communications and self-regulation behavior is demonstrated through communication-feedback mechanism. Polyelectrolyte capsules can sense changes of their surrounding, then start the internal communication by releasing energy-rich cargo mimicking the behavior of the cells. The microgel particles subsequently complete closed-loop communication through providing negative feedback on capsules by enzymatic reaction and actuating pH-regulation of the whole system. Different communication modes and pH-regulation behaviors could be achieved by adjusting spatial and kinetic conditions. Proposed intelligent system is highly customizable due to the wide selection of encapsulated cargos, stimuli-responsive blocks and reaction networks, and would have broad influences in areas ranging from medical implants that assist in stabilizing body functions to microreactor system that regulate catalytic reactions.

5.
Adv Mater ; 34(19): e2201140, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35244311

RESUMEN

The semiconductor-liquid junction (SCLJ), the dominant place in photoelectrochemical (PEC) catalysis, determines the interfacial activity and stability of photoelectrodes, whcih directly affects the viability of PEC hydrogen generation. Though efforts dedicated in past decades, a challenge remains regarding creating a synchronously active and stable SCLJ, owing to the technical hurdles of simultaneously overlaying the two advantages. The present work demonstrates that creating an SCLJ with a unique configuration of the dual interfacial layers can yield BiVO4 photoanodes with synchronously boosted photoelectrochemical activity and operational stability, with values located at the top in the records of such photoelectrodes. The bespoke dual interfacial layers, accessed via grafting laser-generated carbon dots with phenolic hydroxyl groups (LGCDs-PHGs), are experimentally verified effective, not only in generating the uniform layer of LGCDs with covalent anchoring for inhibited photocorrosion, but also in activating, respectively, the charge separation and transfer in each layer for boosted charge-carrier kinetics, resulting in FeNiOOH-LGCDs-PHGs-MBVO photoanodes with a dual configuration with the photocurrent density of 6.08 mA cm-2 @ 1.23 VRHE , and operational stability up to 120 h @ 1.23 VRHE . Further work exploring LGCDs-PHGs from catecholic molecules warrants the proposed strategy as being a universal alternative for addressing the interfacial charge-carrier kinetics and operational stability of semiconductor photoelectrodes.

6.
ACS Omega ; 7(8): 6728-6736, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35252668

RESUMEN

The problem of microbial growth on various surfaces has increased concern in society in the context of antibiotic misuse and the spreading of hospital infections. Thus, the development of new, antibiotic-free antibacterial strategies is required to combat bacteria resistant to usual antibiotic treatments. This work reports a new method for producing an antibiotic-free antibacterial halloysite-based nanocomposite with silver nanoparticles and phosphomolybdic acid as biocides, which can be used as components of smart antimicrobial coatings. The composite was characterized by using energy-dispersive X-ray fluorescence spectroscopy and transmission electron microscopy. The release of phosphomolybdic acid from the nanocomposite was studied by using UV-vis spectroscopy. It was shown that the antibiotic-free nanocomposite consisting of halloysite nanotubes decorated with silver nanoparticles loaded with phosphomolybdic acid and treated with calcium chloride possesses broad antibacterial properties, including the complete growth inhibition of Staphylococcus aureus and Pseudomonas aeruginosa bacteria at a 0.5 g × L-1 concentration and Acinetobacter baumannii at a 0.25 g × L-1 concentration.

7.
Environ Sci Pollut Res Int ; 29(31): 46737-46750, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35174460

RESUMEN

Triple action pollutant responsive multi-layer hybrid nanocoatings of architecture PEI(PAA/ZnO-Co3O4)n were constructed through ZnO-Co3O4 binary oxide co-precipitation followed by its inclusion in multi-layer polymeric thin films using Layer-by-Layer (LbL) deposition. Characterization of the designed architecture was carried out via FTIR, XRD, UV-Vis, and Raman spectroscopic studies to evaluate the chemical nature, bonding, and crystallographic behavior of ZnO-Co3O4. Peaks of ZnO-Co3O4 were recorded at 586.38, 486.08, and 443.64 cm-1 while pronounced shifting of ZnO characteristic E2 (high) peak ~ 450 cm-1 and appearance of modes around 495, 530, 630, and 719 cm-1 indexed via Raman studies validated Co3O4 impregnation into ZnO structure. XRD patterns of ZnO-Co3O4 compared to their previously reported pristine structures also justified the formation of binary oxide as unit composite. SEM micrographs confirmed homogenous multi-layered depositions while EDX analysis confirmed their uniform elemental distribution in the unit structure. Sequential multi-layer buildup up to 48 layer pairs was monitored using ellipsometry with maximum film thickness ~ 89 nm and by UV-Vis at 376 nm. The prepared thin films exhibited significant photodegradation of methylene blue ~ 91% and Cu (II) adsorption capacity ~ 89% within first 90 min of contact, along with prominent bactericidal efficiency against E. coli within 24 h of reaction time. FAAS, ICP-OES, and UV-Vis spectroscopy analyses make these multifunctional hybrid nanocoatings promising for industrial wastewater as well as drinking water purification setups. Furthermore, protuberant recycling and regenerative capacity make these hybrid nanocoatings an eco-friendly system for hydro-remediation.


Asunto(s)
Óxido de Zinc , Adsorción , Cobalto , Escherichia coli , Óxidos/química , Polímeros , Agua , Óxido de Zinc/química
8.
Materials (Basel) ; 16(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36614367

RESUMEN

Phase-change materials (PCMs) attract much attention with regard to their capability of mitigating fossil fuel-based heating in in-building applications, due to the responsive accumulation and release of thermal energy as a latent heat of reversible phase transitions. Organic PCMs possess high latent heat storage capacity and thermal reliability. However, bare PCMs suffer from leakages in the liquid form. Here, we demonstrate a reliable approach to improve the shape stability of organic PCM n-octadecane by encapsulation via interfacial polymerization at an oil/water interface of Pickering emulsion. Cellulose nanocrystals are employed as emulsion stabilizers and branched oligo-polyol with high functionality to crosslink the polyurethane shell in reaction with polyisocyanate dissolved in the oil core. This gives rise to a rigid polyurethane structure with a high density of urethane groups. The formation of a polyurethane shell and successful encapsulation of n-octadecane is confirmed by FTIR spectroscopy, XRD analysis, and fluorescent confocal microscopy. Electron microscopy reveals the formation of non-aggregated capsules with an average size of 18.6 µm and a smooth uniform shell with the thickness of 450 nm. The capsules demonstrate a latent heat storage capacity of 79 J/g, while the encapsulation of n-octadecane greatly improves its shape and thermal stability compared with bulk paraffin.

9.
ACS Omega ; 6(39): 25828-25834, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34632238

RESUMEN

Applying the eutectic hydrated salt (EHS) mixture of Na2HPO4·12H2O and Na2SO4·10H2O in a 1:1 weight ratio as a phase-change material and natural sepiolite nanocarriers as a matrix, the form-stable phase-change composite EHS@sepiolite was fabricated by vacuum impregnation. Due to the high porosity of sepiolite and its nanofibrous structure with internal channels, the effective loading of the phase-change material reached as high as 88 wt %. The melting temperature of the composite was 38.1 °C and its melting enthalpy was 185 J g-1. The crystallinity of the hydrated salt mixture was retained after loading into the sepiolite matrix. The composite demonstrated high stability over 50 heat uptake/release cycles maintaining its melting temperature and melting enthalpy the same. The combination of natural sepiolite nanocarriers and crystallohydrates is a cheap and efficient nanoscale energy storage system with high potential for practical applications and upscaling because of their natural abundance.

10.
Adv Mater ; 33(36): e2101590, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34302406

RESUMEN

Tackling the interfacial loss in emerged perovskite-based solar cells (PSCs) to address synchronously the carrier dynamics and the environmental stability, has been of fundamental and viable importance, while technological hurdles remain in not only creating such interfacial mediator, but the subsequent interfacial embedding in the active layer. This article reports a strategy of interfacial embedding of hydrophobic fluorinated-gold-clusters (FGCs) for highly efficient and stable PSCs. The p-type semiconducting feature enables the FGC efficient interfacial mediator to improve the carrier dynamics by reducing the interfacial carrier transfer barrier and boosting the charge extraction at grain boundaries. The hydrophobic tails of the gold clusters and the hydrogen bonding between fluorine groups and perovskite favor the enhancement of environmental stability. Benefiting from these merits, highly efficient formamidinium lead iodide PSCs (champion efficiency up to 24.02%) with enhanced phase stability under varied relative humidity (RH) from 40% to 95%, as well as highly efficient mixed-cation PSCs with moisture stability (RH of 75%) over 10 000 h are achieved. It is thus inspiring to advance the development of highly efficient and stable PSCs via interfacial embedding laser-generated additives for improved charge transfer/extraction and environmental stability.

11.
Nanoscale ; 13(26): 11343-11348, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34165134

RESUMEN

Communication assemblies between biomimetic nanocapsules in a 3D closed system with self-regulating and self-organization functionalities were demonstrated for the first time. Two types of biomimetic nanocapsules, TiO2/polydopamine capsules and SiO2/polyelectrolytes capsules with different stimuli-responsive properties were prepared and leveraged to sense the external stimulus, transmit chemical signaling, and autonomic communication-controlled release of active cargos. The capsules have clear core-shell structures with average diameters of 30 nm and 25 nm, respectively. The nitrogen adsorption-desorption isotherms and thermogravimetric analysis displayed their massive pore structures and encapsulation capacity of 32% of glycine pH buffer and 68% of benzotriazole, respectively. Different from the direct release mode of the single capsule, the communication assemblies show an autonomic three-stage release process with a "jet lag" feature, showing the internal modulation ability of self-controlled release efficiency. The control overweight ratios of capsules influences on communication-release interaction between capsules. The highest communication-release efficiency (89.6% of benzotriazole) was achieved when the weight ratio of TiO2/polydopamine/SiO2/polyelectrolytes capsules was 5 : 1 or 10 : 1. Communication assemblies containing various types of nanocapsules can autonomically perform complex tasks in a biomimetic fashion, such as cascaded amplification and multidirectional communication platforms in bioreactors.


Asunto(s)
Nanocápsulas , Adsorción , Biomimética , Polielectrolitos , Dióxido de Silicio
12.
Langmuir ; 37(2): 918-927, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33404247

RESUMEN

Core-shell structures containing active materials can be fabricated using almost infinite reactant combinations. A mechanism to describe their formation is therefore useful. In this work, nanoscale all-silica shell capsules with an aqueous core were fabricated by the HCl-catalyzed condensation of tetraethyl orthosilicate (TEOS), using Pickering emulsion templates. Pickering emulsions were fabricated using modified commercial silica (LUDOX TMA) nanoparticles as stabilizers. By following the reaction over a 24 h period, a general mechanism for their formation is suggested. The interfacial activity of the Pickering emulsifiers heavily influenced the final capsule products. Fully stable Pickering emulsion templates with interfacially active particles allowed a highly stable sub-micrometer (500-600 nm) core-shell structure to form. Unstable Pickering emulsions, i.e., where interfacially inactive silica nanoparticles do not adsorb effectively to the interface and produce only partially stable emulsion droplets, resulted in capsule diameter increasing markedly (1+ µm). Scanning electron microscope (SEM) and transmission electron microscope (TEM) measurements revealed the layered silica "colloidosome" structure: a thin yet robust inner silica shell with modified silica nanoparticles anchored to the outer interface. Varying the composition of emulsion phases also affected the size of capsule products, allowing size tuning of the capsules. Silica capsules are promising protective nanocarriers for hydrophilic active materials in applications such as heat storage, sensors, and drug delivery.

13.
ACS Appl Energy Mater ; 4(11): 12789-12797, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-35128339

RESUMEN

Microcapsules loaded with n-docosane as phase change material (mPCMs) for thermal energy storage with a phase change transition temperature in the range of 36-45 °C have been employed to impregnate cotton fabrics. Fabrics impregnated with 8 wt % of mPCMs provided 11 °C of temperature buffering effect during heating. On the cooling step, impregnated fabrics demonstrated 6 °C temperature increase for over 100 cycles of switching on/off of the heating source. Similar thermoregulating performance was observed for impregnated fabrics stored for 4 years (1500 days) at room temperature. Temperature buffering effect increased to 14 °C during heating cycle and temperature increase effect reached 9 °C during cooling cycle in the aged fabric composites. Both effects remained stable in aged fabrics for more than 100 heating/cooling cycles. Our study demonstrates high potential use of the microencapsulated n-docosane for thermal management applications, including high-technical textiles, footwear materials, and building thermoregulating covers and paints with high potential for commercial applications.

14.
Adv Mater ; 32(34): e2001571, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32643839

RESUMEN

Creating colloids of liquid metal with tailored dimensions has been of technical significance in nano-electronics while a challenge remains for generating supranano (<10 nm) liquid metal to unravel the mystery of their unconventional functionalities. Present study pioneers the technology of pulsed laser irradiation in liquid from a solid target to liquid, and yields liquid ternary nano-alloys that are laborious to obtain via wet-chemistry synthesis. Herein, the significant role of the supranano liquid metal on mediating the electrons at the grain boundaries of perovskite films, which are of significance to influence the carriers recombination and hysteresis in perovskite solar cells, is revealed. Such embedding of supranano liquid metal in perovskite films leads to a cesium-based ternary perovskite solar cell with stabilized power output of 21.32% at maximum power point tracing. This study can pave a new way of synthesizing multinary supranano alloys for advanced optoelectronic applications.

15.
ACS Nano ; 14(7): 8894-8901, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32539347

RESUMEN

Phase change materials (PCMs) store latent heat energy as they melt and release it upon freezing. However, they suffer from chemical instability and poor thermal conductivity, which can be improved by encapsulation. Here, we encapsulated a salt hydrate PCM (Mg(NO3)2·6H2O) within all-silica nanocapsules using a Pickering emulsion template. Electron microscopy analysis demonstrated robust silica-silica (RSS) shell formed inner silica layer of approximately 45 nm thickness, with silica Pickering emulsifiers anchored to the surface. The RSS nanostructured capsules are 300-1000 nm in size and have far superior thermal and chemical stability compared with that of the bulk salt hydrate. Differential scanning calorimetry showed encapsulated PCMs were stable over 500+ melt/freeze cycles (equivalent to 500+ day/night temperature difference) with a latent heat of 112.8 J·g-1. Thermogravimetric analysis displayed their impressive thermal stability, with as little as 37.2% mass loss at 800 °C. Raman spectroscopy proved the presence of salt hydrate within RSS capsules and illustrated the improved chemical stability compared to non-encapsulated Mg(NO3)2·6H2O. Energy capsule behavior compared with the bulk material was also observed at the macroscale with thermal imaging, showing that the melting/freezing behavior of the PCM is confined to the nanocapsule core. The thermal conductivity of the silica shell measured by laser flash thermal conductivity method is 1.4 ± 0.2 W·(m·K)-1, which is around 7 times more than the thermal conductivity of the polymer shell (0.2 W·(m·K)-1). RSS capsules containing PCMs have improved thermal stability and conductivity compared to polymer-based capsules and have good potential for thermoregulation or energy storage applications.

16.
Materials (Basel) ; 13(7)2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32283849

RESUMEN

Microwave radar absorbing materials have been the focus of the radar stealth research field. In this study, ceramic structured porous honeycomb-like Al2O3 film was prepared by anodic oxidation, and an Ni layer was deposited on the Al2O3 film via electrodeposition in a neutral environment to form a flower- and grain-like structure in a three-dimensional (3D) network Ni/Al2O3/Ni film. The films both have a through-hole internal structure, soft magnetic properties, and absorb microwaves. The dielectric loss values of two films were little changed, and the maximum microwave absorption values of flower- and grain-like Ni/Al2O3/Ni film were -45.3 and -31.05 dB with relatively wide effective bandwidths, respectively. The porous ceramic structure Al2O3 interlayer prevented the reunion of Ni and isolated the eddy current to improve the microwave absorption properties. The material presented in our paper has good microwave absorption performance with a thin thickness, which indicates the potential for lightweight and efficient microwave absorption applications.

17.
ACS Omega ; 5(8): 4115-4124, 2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32149240

RESUMEN

The photocatalytic degradation of organic molecules is one of the effective ways for water purification. At this point, photocatalytic microreactor systems seem to be promising to enhance the versatility of the photoassisted degradation approach. Herein, we propose photoresponsive microcapsules prepared via layer-by-layer assembly of polyelectrolytes on the novel CaCO3/TiO2 composite template cores. The preparation of CaCO3/TiO2 composite particles is challenging because of the poor compatibility of TiO2 and CaCO3 in an aqueous medium. To prepare stable CaCO3/TiO2 composites, TiO2 nanoparticles were loaded into mesoporous CaCO3 microparticles with a freezing-induced loading technique. The inclusion of TiO2 nanoparticles into CaCO3 templates was evaluated with scanning electron microscopy and elemental analysis with respect to their type, concentration, and number of loading iterations. Upon polyelectrolyte shell assembly, the CaCO3 matrix was dissolved, resulting in microreactor capsules loaded with TiO2 nanoparticles. The photoresponsive properties of the resulted capsules were tested by photoinduced degradation of the low-molecule dye rhodamine B in aqueous solution and fluorescently labeled polymer molecules absorbed on the capsule surface under UV light. The exposure of the capsules to UV light resulted in a pronounced degradation of rhodamine B in capsule microvolume and fluorescent molecules on the capsule surface. Finally, the versatility of preparation of multifunctional photocatalytic and magnetically responsive capsules was demonstrated by iterative freezing-induced loading of TiO2 and magnetite Fe3O4 nanoparticles into CaCO3 templates.

18.
ACS Nano ; 13(10): 12062-12069, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31532636

RESUMEN

Facile methods toward strain-tolerant graphene-based electronic components remain scarce. Although being frequently used to disperse low-dimensional carbonaceous materials, ultrasonication (US) has never been reliable for fabricating stretchable carbonaceous nanocomposite (SCNC). Inspired by the unusual sonochemical assembly between graphene oxide (GO) and carbon nanotube (CNT), we verified the roots-like GO-CNT covalent bonding, rather than just π-π conjugation, was formed during US. In addition, the shockwave-induced collision in the binary-component system enables a burst of fragmentation at the early stage, spatially homogeneous hybridization, and time-dependent restoration of graphitic domains. All of the above are distinct from extensive fragmentation of a conventional single-component system and π-π conjugative assembly. The optimized SCNC exhibits conductivity comparable to reduced monolayer GO and outperforms π-π assemblies in retaining electrical conductance at a strain of 160%-among one of the best reported stretchable conductors. Raman analysis and mechanics simulation confirm the dominant role of counterweighing between the intrinsic and external strains on the mechano-response and durability of SCNC. This work suggests the guideline of creating multiple-component sonochemical systems for various functional nanocomposites.

19.
ACS Nano ; 13(6): 6151-6169, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31124656

RESUMEN

Layer-by-layer (LbL) assembly is a widely used tool for engineering materials and coatings. In this Perspective, dedicated to the memory of ACS Nano associate editor Prof. Dr. Helmuth Möhwald, we discuss the developments and applications that are to come in LbL assembly, focusing on coatings, bulk materials, membranes, nanocomposites, and delivery vehicles.

20.
Chem Commun (Camb) ; 55(27): 3859-3867, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30895976

RESUMEN

Here, we summarize the recent achievements in the field of the nanocontainer-based self-healing coatings made during the last 8 years. The development of nanocontainer-based self-healing coatings was started 15 years ago from the study of nanocontainers with stimuli-responsive release properties able to release anticorrosion agent (inhibitor) on demand only into a corroded area thus preventing its spontaneous leakage. Since then, many different types of nanocontainers have been demonstrated: from polymer capsules to porous inorganic nanoparticles with sophisticated mechanisms of release triggering. Nowadays, the study of the commercial application of nanocontainer-based self-healing coatings is the main focus in this area, especially for coatings with several autonomic functionalities. However, the search for the new types of multifunctional nanocontainers possessing different triggering mechanisms still remains active, especially for low-cost natural nanocontainers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...