Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Nanotechnol ; 18(5): 448-455, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36781997

RESUMEN

The integration of various two-dimensional (2D) materials on wafers enables a more-than-Moore approach for enriching the functionalities of devices1-3. On the other hand, the additive growth of 2D materials to form heterostructures allows construction of materials with unconventional properties. Both may be achieved by materials transfer, but often suffer from mechanical damage or chemical contamination during the transfer. The direct growth of high-quality 2D materials generally requires high temperatures, hampering the additive growth or monolithic incorporation of different 2D materials. Here we report a general approach of growing crystalline 2D layers and their heterostructures at a temperature below 400 °C. Metal iodide (MI, where M = In, Cd, Cu, Co, Fe, Pb, Sn and Bi) layers are epitaxially grown on mica, MoS2 or WS2 at a low temperature, and the subsequent low-barrier-energy substitution of iodine with chalcogens enables the conversion to at least 17 different 2D crystalline metal chalcogenides. As an example, the 2D In2S3 grown on MoS2 at 280 °C exhibits high photoresponsivity comparable with that of the materials grown by conventional high-temperature vapour deposition (~700-1,000 °C). Multiple 2D materials have also been sequentially grown on the same wafer, showing a promising solution for the monolithic integration of different high-quality 2D materials.

2.
ACS Appl Mater Interfaces ; 13(13): 15518-15524, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33769777

RESUMEN

Two-dimensional (2D) heterojunctions have attracted great attention due to their excellent optoelectronic properties. Until now, precisely controlling the nucleation density and stacking area of 2D heterojunctions has been of critical importance but still a huge challenge. It hampers the progress of controlled growth of 2D heterojunctions for optoelectronic devices because the potential relation between numerous growth parameters and nucleation density is always poorly understood. Herein, by cooperatively controlling three parameters (substrate temperature, gas flow rate, and precursor concentration) in modified vapor deposition growth, the nucleation density and stacking area of WS2/Bi2Se3 vertical heterojunctions were successfully modulated. High-quality WS2/Bi2Se3 vertical heterojunctions with various stacking areas were effectively grown from single and multiple nucleation sites. Moreover, the potential nucleation mechanism and efficient charge transfer of WS2/Bi2Se3 vertical heterojunctions were systematically studied by utilizing the density functional theory and photoluminescence spectra. This modified vapor deposition strategy and the proposed mechanism are helpful in controlling the nucleation density and stacking area of other heterojunctions, which plays a key role in the preparation of electronic and optoelectronic nanodevices.

3.
Nanoscale Res Lett ; 15(1): 32, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32016642

RESUMEN

Mixed-dimensional (2D + nD, n = 0, 1, and 3) heterostructures opened up a new avenue for fundamental physics studies and applied nanodevice designs. Herein, a novel type-II staggered band alignment CuFe2O4/MoS2 mixed-dimensional heterostructures (MHs) that present a distinct enhanced (20-28%) acetone gas sensing response compared with pure CuFe2O4 nanotubes are reported. Based on the structural characterizations and DFT calculation results, the tentative mechanism for the improvement of gas sensing performance of the CuFe2O4/MoS2 MHs can be attributed to the synergic effect of type-II band alignment and the MoS2 active sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA