Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 1215, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075174

RESUMEN

The present study aimed to reveal the amount per application of facial sheet masks and its influencing factors in Chinese population to form the base for an accurate exposure assessment. A total of 175 healthy subjects aged 18 years or older were recruited and divided into two subgroups: one group of 35 subjects were asked to apply same mask for 5, 10, 15, 20, 25, and 30 min respectively, and the other 140 subjects were instructed to apply one of four types of facial sheet masks presented in the market for 15 min. Furthermore, phenoxyethanol and methylparaben were measured to reflect actual exposure to chemicals. The sharp increase in the relative exposure to phenoxyethanol (CAS NO.122-99-6) and methylparaben at 25 min and longer suggests applying facial sheet masks for longer than 20 min may drive the exposure to hazardous chemicals to increase significantly. The 90th percentile of amount per application for plant-cellulose, bamboo charcoal fiber, bio-cellulose, and binchotan charcoal fiber-based masks was 5.753, 5.371, 5.017, and 4.821 g respectively. In addition, men and subjects with sebaceous skin demonstrated lower amount per application compared to women and subjects with dry skin, respectively. Finally, our data showed that the larger the contacting area between face and mask, the more amount per application. We concluded that the appropriate time of application should be less than 20 min. And mask fabrics, gender, sebum content, and contacting area could significantly impact the risk assessment of facial sheet masks. Our data for the first time provides insights into a realistic risk assessment of facial sheet masks in Chinese population.


Asunto(s)
Cosméticos/administración & dosificación , Cara , Piel/efectos de los fármacos , Administración Cutánea , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Medición de Riesgo
2.
Mol Plant Pathol ; 23(4): 576-582, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34954877

RESUMEN

Bunyaviruses cleave host cellular mRNAs to acquire cap structures for their own mRNAs in a process called cap-snatching. How bunyaviruses interact with cellular mRNA surveillance pathways such as nonsense-mediated decay (NMD) during cap-snatching remains poorly understood, especially in plants. Rice stripe virus (RSV) is a plant bunyavirus threatening rice production in East Asia. Here, with a newly developed system allowing us to present defined mRNAs to RSV in Nicotiana benthamiana, we found that the frequency of RSV to target nonsense mRNAs (nsRNAs) during cap-snatching was much lower than its frequency to target normal mRNAs. The frequency of RSV to target nsRNAs was increased by virus-induced gene silencing of UPF1 or SMG7, each encoding a protein component involved in early steps of NMD (in an rdr6 RNAi background). Coincidently, RSV accumulation was increased in the UPF1- or SMG7-silenced plants. These data indicated that the frequency of RSV to target nsRNAs during cap-snatching is restricted by NMD. By restricting the frequency of RSV to target nsRNAs, NMD may impose a constraint to the overall cap-snatching efficiency of RSV. Besides a deeper understanding for the cap-snatching of RSV, these findings point to a novel role of NMD in plant-bunyavirus interactions.


Asunto(s)
Orthobunyavirus , Tenuivirus , Proteínas Portadoras/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido/genética , Orthobunyavirus/genética , Orthobunyavirus/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tenuivirus/genética
3.
Front Microbiol ; 11: 569869, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33362731

RESUMEN

Fusarium wilt caused by Fusarium oxysporum f. sp. momordicae (FoM) is an important fungal disease that affects the production of bitter gourd. Hypovirulence-associated mycoviruses have great potential and application prospects for controlling the fungal disease. In this study, a novel ourmia-like virus, named Fusarium oxysporum ourmia-like virus 1 (FoOuLV1), was isolated from FoM strain HuN8. The viral genomic RNA is 2,712 nucleotides (nt) in length and contains an open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) using either standard or mitochondrial codes. In strain HuN8, there was also a FoOuLV1-associated RNA segment with 1,173 nt in length with no sequence homology. Phylogenetic analysis showed that FoOuLV1 is a member of the genus Magoulivirus of the family Botourmiaviridae. FoOuLV1 was found to be associated with hypovirulence in FoM. Moreover, FoOuLV1 and its hypovirulence trait can be transmitted horizontally to other FoM strains and also to other formae speciale strains of F. oxysporum. In addition, FoOuLV1 showed significant biological control effect against the bitter gourd Fusarium wilt. To our knowledge, this study reveals the first description of a hypovirulence-associated ourmia-like mycovirus, which has the potential to the biological control of Fusarium wilt.

4.
Environ Sci Pollut Res Int ; 26(12): 11730-11742, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30815815

RESUMEN

To investigate the chemical composition, size distribution, and mixing state of aerosol particles on heavy pollution days, single-particle aerosol mass spectrometry was conducted during 9-26 October 2015 in Xi'an, China. The measured particles were classified into six major categories: biomass burning (BB) particles, K-secondary particles, elemental carbon (EC)-related particles, metal-containing particles, dust, and organic carbon (OC) particles. BB and EC-related particles were the dominant types during the study period and mainly originated from biomass burning, vehicle emissions, and coal combustion. According to the ambient air quality index, two typical episodes were defined: clean days (CDs) and polluted days (PDs). Accumulation of BB particles and EC-related particles was the main reason for the pollution in Xi'an. Most types of particle size were larger on PDs than CDs. Each particle type was mixed with secondary species to different degrees on CDs and PDs, indicating that atmospheric aging occurred. The mixing state results demonstrated that the primary tracers were oxidized or vanished and that the amount of secondary species was increased on PDs. This study provides valuable information and a dataset to help control air pollution in the urban areas of Xi'an. Graphical abstract.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Aerosoles/análisis , Contaminación del Aire/análisis , Carbono/análisis , China , Carbón Mineral/análisis , Polvo/análisis , Espectrometría de Masas , Metales/análisis , Tamaño de la Partícula , Material Particulado/análisis , Emisiones de Vehículos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...