Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 56
2.
SLAS Discov ; 27(8): 448-459, 2022 12.
Article En | MEDLINE | ID: mdl-36210051

BACKGROUND: Stress responses are believed to involve corticotropin releasing factor (CRF), its two cognate receptors (CRF1 and CRF2), and the CRF-binding protein (CRFBP). Whereas decades of research has focused on CRF1, the role of CRF2 in the central nervous system (CNS) has not been thoroughly investigated. We have previously reported that CRF2, interacting with a C terminal fragment of CRFBP, CRFBP(10kD), may have a role in the modulation of neuronal activity. However, the mechanism by which CRF interacts with CRFBP(10kD) and CRF2 has not been fully elucidated due to the lack of useful chemical tools to probe CRFBP. METHODS: We miniaturized a cell-based assay, where CRFBP(10kD) is fused as a chimera with CRF2, and performed a high-throughput screen (HTS) of 350,000 small molecules to find negative allosteric modulators (NAMs) of the CRFBP(10kD)-CRF2 complex. Hits were confirmed by evaluating activity toward parental HEK293 cells, toward CRF2 in the absence of CRFBP(10kD), and toward CRF1 in vitro. Hits were further characterized in ex vivo electrophysiology assays that target: 1) the CRF1+ neurons in the central nucleus of the amygdala (CeA) of CRF1:GFP mice that express GFP under the CRF1 promoter, and 2) the CRF-induced potentiation of N-methyl-D-aspartic acid receptor (NMDAR)-mediated synaptic transmission in dopamine neurons in the ventral tegmental area (VTA). RESULTS: We found that CRFBP(10kD) potentiates CRF-intracellular Ca2+ release specifically via CRF2, indicating that CRFBP may possess excitatory roles in addition to the inhibitory role established by the N-terminal fragment of CRFBP, CRFBP(27kD). We identified novel small molecule CRFBP-CRF2 NAMs that do not alter the CRF1-mediated effects of exogenous CRF but blunt CRF-induced potentiation of NMDAR-mediated synaptic transmission in dopamine neurons in the VTA, an effect mediated by CRF2 and CRFBP. CONCLUSION: These results provide the first evidence of specific roles for CRF2 and CRFBP(10kD) in the modulation of neuronal activity and suggest that CRFBP(10kD)-CRF2 NAMs can be further developed for the treatment of stress-related disorders including alcohol and substance use disorders.


Corticotropin-Releasing Hormone , Research Design , Humans , Animals , Mice , HEK293 Cells
3.
Cancer Lett ; 534: 215613, 2022 05 28.
Article En | MEDLINE | ID: mdl-35276290

Signal transducer and activator of transcription (Stat)3 is a valid anticancer therapeutic target. We have discovered a highly potent chemotype that amplifies the Stat3-inhibitory activity of lead compounds to levels previously unseen. The azetidine-based compounds, including H172 (9f) and H182, irreversibly bind to Stat3 and selectively inhibit Stat3 activity (IC50 0.38-0.98 µM) over Stat1 or Stat5 (IC50 > 15.8 µM) in vitro. Mass spectrometry detected the Stat3 cysteine peptides covalently bound to the azetidine compounds, and the key residues, Cys426 and Cys468, essential for the high potency inhibition, were confirmed by site-directed mutagenesis. In triple-negative breast cancer (TNBC) models, treatment with the azetidine compounds inhibited constitutive and ligand-induced Stat3 signaling, and induced loss of viable cells and tumor cell death, compared to no effect on the induction of Janus kinase (JAK)2, Src, epidermal growth factor receptor (EGFR), and other proteins, or weak effects on cells that do not harbor aberrantly-active Stat3. H120 (8e) and H182 as a single agent inhibited growth of TNBC xenografts, and H278 (hydrochloric acid salt of H182) in combination with radiation completely blocked mouse TNBC growth and improved survival in syngeneic models. We identify potent azetidine-based, selective, irreversible Stat3 inhibitors that inhibit TNBC growth in vivo.


Azetidines , Triple Negative Breast Neoplasms , Animals , Apoptosis , Azetidines/pharmacology , Cell Line, Tumor , Humans , Mice , Phosphorylation , STAT3 Transcription Factor/metabolism , Signal Transduction , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics
4.
J Med Chem ; 65(2): 1352-1369, 2022 01 27.
Article En | MEDLINE | ID: mdl-34807584

Serine/threonine-protein kinases 3 and 4 (STK3 and STK4, respectively) are key components of the Hippo signaling pathway, which regulates cell proliferation and death and provides a potential therapeutic target for acute myeloid leukemia (AML). Herein, we report the structure-based design of a series of pyrrolopyrimidine derivatives as STK3 and STK4 inhibitors. In an initial screen, the compounds exhibited low nanomolar potency against both STK3 and STK4. Crystallization of compound 6 with STK4 revealed two-point hinge binding in the ATP-binding pocket. Further characterization and analysis demonstrated that compound 20 (SBP-3264) specifically inhibited the Hippo signaling pathway in cultured mammalian cells and possessed favorable pharmacokinetic and pharmacodynamic properties in mice. We show that genetic knockdown and pharmacological inhibition of STK3 and STK4 suppress the proliferation of AML cells in vitro. Thus, SBP-3264 is a valuable chemical probe for understanding the roles of STK3 and STK4 in AML and is a promising candidate for further advancement as a potential therapy.


Hippo Signaling Pathway/drug effects , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Serine-Threonine Kinase 3/antagonists & inhibitors , Animals , Female , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred C57BL , Protein Kinase Inhibitors/chemistry
5.
Front Behav Neurosci ; 15: 786855, 2021.
Article En | MEDLINE | ID: mdl-34912198

Stress is well-known to contribute to the development of many psychiatric illnesses including alcohol and substance use disorder (AUD and SUD). The deleterious effects of stress have also been implicated in the acceleration of biological age, and age-related neurodegenerative disease. The physio-pathology of stress is regulated by the corticotropin-releasing factor (CRF) system, the upstream component of the hypothalamic-pituitary-adrenal (HPA) axis. Extensive literature has shown that dysregulation of the CRF neuroendocrine system contributes to escalation of alcohol consumption and, similarly, chronic alcohol consumption contributes to disruption of the stress system. The CRF system also represents the central switchboard for regulating homeostasis, and more recent studies have found that stress and aberrations in the CRF pathway are implicated in accelerated aging and age-related neurodegenerative disease. Corticotropin releasing factor binding protein (CRFBP) is a secreted glycoprotein distributed in peripheral tissues and in specific brain regions. It neutralizes the effects of CRF by sequestering free CRF, but may also possess excitatory function by interacting with CRF receptors. CRFBP's dual role in influencing CRF bioavailability and CRF receptor signaling has been shown to have a major part in the HPA axis response. Therefore, CRFBP may represent a valuable target to treat stress-related illness, including: development of novel medications to treat AUD and restore homeostasis in the aging brain. This narrative review focuses on molecular mechanisms related to the role of CRFBP in the progression of addictive and psychiatric disorders, biological aging, and age-related neurodegenerative disease. We provide an overview of recent studies investigating modulation of this pathway as a potential therapeutic target for AUD and age-related neurodegenerative disease.

6.
J Med Chem ; 63(23): 14609-14625, 2020 12 10.
Article En | MEDLINE | ID: mdl-33200929

Inhibition of autophagy, the major cellular recycling pathway in mammalian cells, is a promising strategy for the treatment of triple-negative breast cancer (TNBC). We previously reported SBI-0206965, a small molecule inhibitor of unc-51-like autophagy activating kinase 1 (ULK1), which is a key regulator of autophagy initiation. Herein, we describe the design, synthesis, and characterization of new dual inhibitors of ULK1 and ULK2 (ULK1/2). One inhibitor, SBP-7455 (compound 26), displayed improved binding affinity for ULK1/2 compared with SBI-0206965, potently inhibited ULK1/2 enzymatic activity in vitro and in cells, reduced the viability of TNBC cells and had oral bioavailability in mice. SBP-7455 inhibited starvation-induced autophagic flux in TNBC cells that were dependent on autophagy for survival and displayed synergistic cytotoxicity with the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib against TNBC cells. These data suggest that combining ULK1/2 and PARP inhibition may have clinical utility for the treatment of TNBC.


Antineoplastic Agents/pharmacology , Autophagy-Related Protein-1 Homolog/antagonists & inhibitors , Autophagy/drug effects , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Phthalazines/pharmacology , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Drug Synergism , Female , HEK293 Cells , Humans , Mice, Inbred C57BL , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/chemical synthesis , Triple Negative Breast Neoplasms/drug therapy
7.
Theranostics ; 10(24): 11178-11196, 2020.
Article En | MEDLINE | ID: mdl-33042277

Selective modulation of metabotropic glutamate receptor 2 (mGlu2) represents a novel therapeutic approach for treating brain disorders, including schizophrenia, depression, Parkinson's disease (PD), Alzheimer's disease (AD), drug abuse and addiction. Imaging mGlu2 using positron emission tomography (PET) would allow for in vivo quantification under physiological and pathological conditions and facilitate drug discovery by enabling target engagement studies. In this paper, we aimed to develop a novel specific radioligand derived from negative allosteric modulators (NAMs) for PET imaging of mGlu2. Methods. A focused small molecule library of mGlu2 NAMs with tetrahydro naphthyridine scaffold was synthesized for pharmacology and physicochemical evaluation. GIRK dose-response assays and CNS panel binding selectivity assays were performed to study the affinity and selectivity of mGlu2 NAMs, among which compounds 14a and 14b were selected as PET ligand candidates. Autoradiography in SD rat brain sections was used to confirm the in vitro binding specificity and selectivity of [11C]14a and [11C]14b towards mGlu2. In vivo binding specificity was then studied by PET imaging. Whole body biodistribution study and radiometabolite analysis were conducted to demonstrate the pharmacokinetic properties of [11C]14b as most promising PET mGlu2 PET ligand. Results. mGlu2 NAMs 14a-14g were synthesized in 14%-20% yields in five steps. NAMs 14a and 14b were selected to be the most promising ligands due to their high affinity in GIRK dose-response assays. [11C]14a and [11C]14b displayed similar heterogeneous distribution by autoradiography, consistent with mGlu2 expression in the brain. While PET imaging study showed good brain permeability for both tracers, compound [11C]14b demonstrated superior binding specificity compared to [11C]14a. Further radiometabolite analysis of [11C]14b showed excellent stability in the brain. Conclusions. Compound 14b exhibited high affinity and excellent subtype selectivity, which was then evaluated by in vitro autoradiography and in vivo PET imaging study after labeling with carbon-11. Ligand [11C]14b, which we named [11C]MG2-1904, demonstrated high brain uptake and excellent in vitro/in vivo specific binding towards mGlu2 with high metabolic stability in the brain. As proof-of-concept, our preliminary work demonstrated a successful example of visualizing mGlu2in vivo derived from NAMs, which represents a promising chemotype for further development and optimization aimed for clinical translation.


Naphthyridines/administration & dosage , Positron-Emission Tomography/methods , Radioligand Assay/methods , Radiopharmaceuticals/administration & dosage , Receptors, Metabotropic Glutamate/analysis , Allosteric Regulation , Animals , Autoradiography , Brain/diagnostic imaging , Carbon Radioisotopes , Ligands , Male , Models, Animal , Naphthyridines/chemistry , Naphthyridines/pharmacokinetics , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Rats , Receptors, Metabotropic Glutamate/metabolism , Tissue Distribution
8.
J Med Chem ; 63(20): 11469-11483, 2020 10 22.
Article En | MEDLINE | ID: mdl-32960052

Metabotropic glutamate receptor 2 (mGlu2) is a known target for treating several central nervous system (CNS) disorders. To develop a viable positron emission tomography (PET) ligand for mGlu2, we identified new candidates 5a-i that are potent negative allosteric modulators (NAMs) of mGlu2. Among these candidates, 4-(2-fluoro-4-methoxyphenyl)-5-((1-methyl-1H-pyrazol-3-yl)methoxy)picolinamide (5i, also named as [11C]MG2-1812) exhibited high potency, high subtype selectivity, and favorable lipophilicity. Compound 5i was labeled with positron-emitting carbon-11 (11C) to obtain [11C]5i in high radiochemical yield and high molar activity by O-[11C]methylation of the phenol precursor 12 with [11C]CH3I. In vitro autoradiography with [11C]5i showed heterogeneous radioactive accumulation in the brain tissue sections, ranked in the order: cortex > striatum > hippocampus > cerebellum ≫ thalamus > pons. PET study of [11C]5i indicated in vivo specific binding of mGlu2 in the rat brain. Based on the [11C]5i scaffold, further optimization for new candidates is underway to identify a more suitable ligand for imaging mGlu2.


Molecular Imaging/methods , Positron-Emission Tomography/methods , Receptors, Metabotropic Glutamate/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Animals , Autoradiography , Brain/metabolism , Carbon Radioisotopes , Cell Line , Humans , Ligands , Male , Mice , Mice, Knockout , Molecular Structure , Organ Specificity , Rats, Sprague-Dawley , Tissue Distribution
9.
J Vis Exp ; (161)2020 07 17.
Article En | MEDLINE | ID: mdl-32744526

The Src-homology 2 (SH2) domain-containing phosphatase 2 (SHP2), encoded by the PTPN11 proto-oncogene, is a key mediator of receptor tyrosine kinase (RTK)-driven cell signaling, promoting cell survival and proliferation. In addition, SHP2 is recruited by immune check point receptors to inhibit B and T cell activation. Aberrant SHP2 function has been implicated in the development, progression, and metastasis of many cancers. Indeed, small molecule SHP2 inhibitors have recently entered clinical trials for the treatment of solid tumors with Ras/Raf/ERK pathway activation, including tumors with some oncogenic Ras mutations. However, the current class of SHP2 inhibitors is not effective against the SHP2 oncogenic variants that occur frequently in leukemias, and the development of specific small molecules that target oncogenic SHP2 is the subject of current research. A common problem with most drug discovery campaigns involving cytosolic proteins like SHP2 is that the primary assays that drive chemical discovery are often in vitro assays that do not report the cellular target engagement of candidate compounds. To provide a platform for measuring cellular target engagement, we developed both wild-type and mutant SHP2 cellular thermal shift assays. These assays reliably detect target engagement of SHP2 inhibitors in cells. Here, we provide a comprehensive protocol of this assay, which provides a valuable tool for the assessment and characterization of SHP2 inhibitors.


Enzyme Inhibitors/therapeutic use , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Enzyme Inhibitors/pharmacology , Humans , Proto-Oncogene Mas , Signal Transduction
10.
J Biol Chem ; 295(9): 2601-2613, 2020 02 28.
Article En | MEDLINE | ID: mdl-31953320

The nonreceptor protein-tyrosine phosphatase (PTP) SHP2 is encoded by the proto-oncogene PTPN11 and is a ubiquitously expressed key regulator of cell signaling, acting on a number of cellular processes and components, including the Ras/Raf/Erk, PI3K/Akt, and JAK/STAT pathways and immune checkpoint receptors. Aberrant SHP2 activity has been implicated in all phases of tumor initiation, progression, and metastasis. Gain-of-function PTPN11 mutations drive oncogenesis in several leukemias and cause developmental disorders with increased risk of malignancy such as Noonan syndrome. Until recently, small molecule-based targeting of SHP2 was hampered by the failure of orthosteric active-site inhibitors to achieve selectivity and potency within a useful therapeutic window. However, new SHP2 allosteric inhibitors with excellent potency and selectivity have sparked renewed interest in the selective targeting of SHP2 and other PTP family members. Crucially, drug discovery campaigns focusing on SHP2 would greatly benefit from the ability to validate the cellular target engagement of candidate inhibitors. Here, we report a cellular thermal shift assay that reliably detects target engagement of SHP2 inhibitors. Using this assay, based on the DiscoverX InCell Pulse enzyme complementation technology, we characterized the binding of several SHP2 allosteric inhibitors in intact cells. Moreover, we demonstrate the robustness and reliability of a 384-well miniaturized version of the assay for the screening of SHP2 inhibitors targeting either WT SHP2 or its oncogenic E76K variant. Finally, we provide an example of the assay's ability to identify and characterize novel compounds with specific cellular potency for either WT or mutant SHP2.


Drug Discovery/methods , Enzyme Inhibitors/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Animals , Carcinogenesis/genetics , Cell Line , Gain of Function Mutation , Humans , Protein Binding , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Proto-Oncogene Mas
11.
Biol Psychiatry ; 83(11): 955-962, 2018 06 01.
Article En | MEDLINE | ID: mdl-29628194

The ability of novel pharmacological compounds to improve outcomes in preclinical models is often not translated into clinical efficacy. Psychiatric disorders do not have biological boundaries, and identifying mechanisms to improve the translational bottleneck between preclinical and clinical research domains is an important and challenging task. Glutamate transmission is disrupted in several neuropsychiatric disorders. Metabotropic glutamate (mGlu) receptors represent a diverse class of receptors that contribute to excitatory neurotransmission. Given the wide, yet region-specific manner of expression, developing pharmacological compounds to modulate mGlu receptor activity provides an opportunity to subtly and selectively modulate excitatory neurotransmission. This review focuses on the potential involvement of mGlu5 receptor disruption in major depressive disorder and substance and/or alcohol use disorders. We provide an overview of the justification of targeting mGlu5 receptors in the treatment of these disorders, summarize the preclinical evidence for negatively modulating mGlu5 receptors as a therapeutic target for major depressive disorders and nicotine dependence, and highlight the outcomes of recent clinical trials. While the evidence of mGlu5 receptor negative allosteric modulation has been promising in preclinical investigations, these beneficial effects have not translated into clinical efficacy. In this review, we identify key challenges that may contribute to poor clinical translation and provide suggested approaches moving forward to potentially improve the translation from preclinical to clinical domains. Such approaches may increase the success of clinical trials and may reduce the translational bottleneck that exists in drug discovery for psychiatric disorders.


Receptor, Metabotropic Glutamate 5/antagonists & inhibitors , Receptor, Metabotropic Glutamate 5/metabolism , Smoking/drug therapy , Tobacco Use Disorder/drug therapy , Animals , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/metabolism , Drug Discovery , Excitatory Amino Acid Antagonists/administration & dosage , Humans , Randomized Controlled Trials as Topic , Receptor, Metabotropic Glutamate 5/agonists , Smoking/metabolism , Synaptic Transmission/drug effects , Treatment Outcome
12.
Tetrahedron ; 74(25): 3165-3170, 2018 Jun 21.
Article En | MEDLINE | ID: mdl-30705468

Benzodiazepinones are privileged scaffolds with activity against multiple therapeutically relevant biological targets. In support of our ongoing studies around allosteric modulators of metabotropic glutamate receptors (mGlus) we required the multigram synthesis of a ß-ketoester key intermediate. We report the continuous flow synthesis of tert-butyl 3-(2-cyanopyridin-4-yl)-3-oxopropanoate and its transformation to potent mGlu2/3 negative allosteric modulators (NAMs) in batch mode.

13.
Neuropsychopharmacology ; 42(13): 2553-2566, 2017 Dec.
Article En | MEDLINE | ID: mdl-28664928

Activation of ß-adrenergic receptors (ßARs) enhances both the induction of long-term potentiation (LTP) in hippocampal CA1 pyramidal cells and hippocampal-dependent cognitive function. Interestingly, previous studies reveal that coincident activation of group II metabotropic glutamate (mGlu) receptors with ßARs in the hippocampal astrocytes induces a large increase in cyclic-AMP (cAMP) accumulation and release of adenosine. Adenosine then acts on A1 adenosine receptors at neighboring excitatory Schaffer collateral terminals, which could counteract effects of activation of neuronal ßARs on excitatory transmission. On the basis of this, we postulated that activation of the specific mGlu receptor subtype that mediates this response could inhibit ßAR-mediated effects on hippocampal synaptic plasticity and cognitive function. Using novel mGlu receptor subtype-selective allosteric modulators along with knockout mice we now report that the effects of mGlu2/3 agonists on ßAR-mediated increases in cAMP accumulation are exclusively mediated by mGlu3. Furthermore, mGlu3 activation inhibits the ability of the ßAR agonist isoproterenol to enhance hippocampal LTP, and this effect is absent in slices treated with either a glial toxin or an adenosine A1 receptor antagonist. Finally, systemic administration of the mGlu2/3 agonist LY379268 disrupted contextual fear memory in a manner similar to the effect of the ßAR antagonist propranolol, and this effect was reversed by the mGlu3-negative allosteric modulator VU0650786. Taken together, these data suggest that mGlu3 can influence astrocytic signaling and modulate ßAR-mediated effects on hippocampal synaptic plasticity and cognitive function.


Cyclic AMP/metabolism , Long-Term Potentiation/physiology , Memory Consolidation/physiology , Receptors, Adrenergic, beta/metabolism , Receptors, Metabotropic Glutamate/metabolism , Animals , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Conditioning, Psychological/drug effects , Conditioning, Psychological/physiology , Hippocampus/cytology , Hippocampus/drug effects , Hippocampus/metabolism , Long-Term Potentiation/drug effects , Male , Memory Consolidation/drug effects , Mice, Inbred ICR , Mice, Knockout , Neurotransmitter Agents/pharmacology , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/genetics , Tissue Culture Techniques
14.
ACS Chem Neurosci ; 8(9): 1937-1948, 2017 09 20.
Article En | MEDLINE | ID: mdl-28565908

Metabotropic glutamate 2 receptors (mGlu2) are involved in the pathogenesis of several CNS disorders and neurodegenerative diseases. Pharmacological modulation of this target represents a potential disease-modifying approach for the treatment of substance abuse, depression, schizophrenia, and dementias. While quantification of mGlu2 receptors in the living brain by positron emission tomography (PET) would help us better understand signaling pathways relevant to these conditions, few successful examples have been demonstrated to image mGlu2 in vivo, and a suitable PET tracer is yet to be identified. Herein we report the design and synthesis of a radiolabeled negative allosteric modulator (NAM) for mGlu2 PET tracer development based on a quinoline 2-carboxamide scaffold. The most promising candidate, 7-((2,5-dioxopyrrolidin-1-yl)methyl)-4-(2-fluoro-4-[11C]methoxyphenyl) quinoline-2-carboxamide ([11C]QCA) was prepared in 13% radiochemical yield (non-decay-corrected at the end of synthesis) with >99% radiochemical purity and >74 GBq/µmol (2 Ci/µmol) specific activity. While the tracer showed limited brain uptake (0.3 SUV), probably attributable to effects on PgP/Bcrp efflux pump, in vitro autoradiography studies demonstrated heterogeneous brain distribution and specific binding. Thus, [11C]QCA is a chemical probe that provides the basis for the development of a new generation mGlu2 PET tracers.


Brain/metabolism , Positron-Emission Tomography , Pyrrolidines , Quinolines , Radiopharmaceuticals , Receptors, Metabotropic Glutamate/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/deficiency , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Adhesins, Escherichia coli , Allosteric Regulation , Animals , Autoradiography , Brain/diagnostic imaging , Drug Design , Humans , Magnetic Resonance Imaging , Male , Mice, Knockout , Mice, Mutant Strains , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Molecular Structure , Preliminary Data , Pyrrolidines/chemistry , Quinolines/chemistry , Radiopharmaceuticals/chemical synthesis , Rats, Sprague-Dawley , Tissue Distribution
15.
Front Pharmacol ; 8: 46, 2017.
Article En | MEDLINE | ID: mdl-28261092

Alzheimer's disease (AD) is characterized by neuronal and synaptic loss. One process that could contribute to this loss is the intracellular caspase cleavage of the amyloid precursor protein (APP) resulting in release of the toxic C-terminal 31-amino acid peptide APP-C31 along with the production of APPΔC31, full-length APP minus the C-terminal 31 amino acids. We previously found that a mutation in APP that prevents this caspase cleavage ameliorated synaptic loss and cognitive impairment in a murine AD model. Thus, inhibition of this cleavage is a reasonable target for new therapeutic development. In order to identify small molecules that inhibit the generation of APP-C31, we first used an APPΔC31 cleavage site-specific antibody to develop an AlphaLISA to screen several chemical compound libraries for the level of N-terminal fragment production. This antibody was also used to develop an ELISA for validation studies. In both high throughput screening (HTS) and validation testing, the ability of compounds to inhibit simvastatin- (HTS) or cerivastatin- (validation studies) induced caspase cleavage at the APP-D720 cleavage site was determined in Chinese hamster ovary (CHO) cells stably transfected with wildtype (wt) human APP (CHO-7W). Several compounds, as well as control pan-caspase inhibitor Q-VD-OPh, inhibited APPΔC31 production (measured fragment) and rescued cell death in a dose-dependent manner. The effective compounds fell into several classes including SERCA inhibitors, inhibitors of Wnt signaling, and calcium channel antagonists. Further studies are underway to evaluate the efficacy of lead compounds - identified here using cells and tissues expressing wt human APP - in mouse models of AD expressing mutated human APP, as well as to identify additional compounds and determine the mechanisms by which they exert their effects.

17.
Mol Cell ; 59(2): 285-97, 2015 Jul 16.
Article En | MEDLINE | ID: mdl-26118643

Many tumors become addicted to autophagy for survival, suggesting inhibition of autophagy as a potential broadly applicable cancer therapy. ULK1/Atg1 is the only serine/threonine kinase in the core autophagy pathway and thus represents an excellent drug target. Despite recent advances in the understanding of ULK1 activation by nutrient deprivation, how ULK1 promotes autophagy remains poorly understood. Here, we screened degenerate peptide libraries to deduce the optimal ULK1 substrate motif and discovered 15 phosphorylation sites in core autophagy proteins that were verified as in vivo ULK1 targets. We utilized these ULK1 substrates to perform a cell-based screen to identify and characterize a potent ULK1 small molecule inhibitor. The compound SBI-0206965 is a highly selective ULK1 kinase inhibitor in vitro and suppressed ULK1-mediated phosphorylation events in cells, regulating autophagy and cell survival. SBI-0206965 greatly synergized with mechanistic target of rapamycin (mTOR) inhibitors to kill tumor cells, providing a strong rationale for their combined use in the clinic.


Autophagy/physiology , Benzamides/pharmacology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Pyrimidines/pharmacology , Amino Acid Sequence , Animals , Autophagy/drug effects , Autophagy-Related Protein-1 Homolog , Benzamides/chemistry , Catalytic Domain/genetics , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Consensus Sequence , Gene Knockout Techniques , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mice , Molecular Sequence Data , Phosphorylation , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , Pyrimidines/chemistry , RNA, Small Interfering/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
18.
J Biomol Screen ; 20(7): 858-68, 2015 Aug.
Article En | MEDLINE | ID: mdl-25877150

Muscarinic acetylcholine receptors (mAChRs) have long been viewed as viable targets for novel therapeutic agents for the treatment of Alzheimer's disease and other disorders involving impaired cognitive function. In an attempt to identify orthosteric and allosteric modulators of the muscarinic acetylcholine receptor M(4) (M(4)), we developed a homogenous, multiparametric, 1536-well assay to measure M(4) receptor agonism, positive allosteric modulation (PAM), and antagonism in a single well. This assay yielded a Z' of 0.85 ± 0.05 in the agonist, 0.72 ± 0.07 in PAM, and 0.80 ± 0.06 in the antagonist mode. Parallel screening of the M(1) and M(5) subtypes using the same multiparametric assay format revealed chemotypes that demonstrate selectivity and/or promiscuity between assays and modalities. This identified 503 M(4) selective primary agonists, 1450 PAMs, and 2389 antagonist hits. Concentration-response analysis identified 25 selective agonists, 4 PAMs, and 41 antagonists. This demonstrates the advantages of this approach to rapidly identify selective receptor modulators while efficiently removing assay artifacts and undesirable compounds.


Drug Discovery , High-Throughput Screening Assays , Muscarinic Agonists/pharmacology , Muscarinic Antagonists/pharmacology , Receptor, Muscarinic M4/metabolism , Allosteric Regulation , Animals , Cell Line , Drug Discovery/methods , Gene Expression , Humans , Muscarinic Agonists/chemistry , Muscarinic Antagonists/chemistry , Receptor, Muscarinic M4/genetics , Small Molecule Libraries
19.
ACS Chem Neurosci ; 6(3): 464-75, 2015 Mar 18.
Article En | MEDLINE | ID: mdl-25544056

Endoplasmic reticulum (ER) stress causes neuronal dysfunction followed by cell death and is recognized as a feature of many neurodegenerative diseases. Using a phenotypic screen, we recently identified benzodiazepinone derivatives that reduce ER stress-mediated apoptosis in a rat neuronal progenitor cell line (CSM14.1). Herein we describe how structure-activity relationship (SAR) studies around these screening hits led to compounds that display robust cytoprotective activity against thapsigargin-induced ER stress in SH-SY5Y and H4 human neuronal cell lines. We demonstrate that the most potent of these derivatives, compound 4hh, inhibits the activation of p38 MAP kinase (p38) and c-Jun N-terminal kinase (JNK), protein kinases that are downstream signal effectors of the unfolded protein response (UPR). Compound 4hh specifically protects against thapsigargin-induced cell death and displays no protection against other insults known to induce cellular stress or activate p38. However, compound 4hh provides moderate inhibition of p38 activity stimulated by compounds that disrupt calcium homeostasis. Our data indicate that probe compound 4hh is a valuable small molecule tool that can be used to investigate the effects of ER stress on human neurons. This approach may provide the basis for the future development of therapeutics for the treatment of neurodegenerative diseases.


Benzodiazepinones/chemistry , Benzodiazepinones/pharmacology , Endoplasmic Reticulum Stress/drug effects , Neurons/drug effects , Animals , Calcium/metabolism , Cell Death/drug effects , Cell Line , Dose-Response Relationship, Drug , Enzyme Inhibitors/toxicity , Homeostasis/drug effects , Humans , Imidazoles/pharmacology , Ionomycin/pharmacology , Leupeptins/pharmacology , MAP Kinase Signaling System/drug effects , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology , Rats , Structure-Activity Relationship , Thapsigargin/chemistry , Thapsigargin/toxicity
20.
J Med Chem ; 57(10): 4154-72, 2014 May 22.
Article En | MEDLINE | ID: mdl-24735492

As part of our ongoing small-molecule metabotropic glutamate (mGlu) receptor positive allosteric modulator (PAM) research, we performed structure-activity relationship (SAR) studies around a series of group II mGlu PAMs. Initial analogues exhibited weak activity as mGlu2 receptor PAMs and no activity at mGlu3. Compound optimization led to the identification of potent mGlu2/3 selective PAMs with no in vitro activity at mGlu1,4-8 or 45 other CNS receptors. In vitro pharmacological characterization of representative compound 44 indicated agonist-PAM activity toward mGlu2 and PAM activity at mGlu3. The most potent mGlu2/3 PAMs were characterized in assays predictive of ADME/T and pharmacokinetic (PK) properties, allowing the discovery of systemically active mGlu2/3 PAMs. On the basis of its overall profile, compound 74 was selected for behavioral studies and was shown to dose-dependently decrease cocaine self-administration in rats after intraperitoneal administration. These mGlu2/3 receptor PAMs have significant potential as small molecule tools for investigating group II mGlu pharmacology.


Cocaine-Related Disorders/drug therapy , Receptors, Metabotropic Glutamate/agonists , Allosteric Regulation , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Design , HEK293 Cells , Humans , Male , Rats , Rats, Wistar
...