Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 41
1.
Biosci Trends ; 17(6): 503-507, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-38072446

The main technological difficulties of developing an intracellular (transmembrane) transport system for protein drugs lie in two points: i) overcoming the barriers in the cellular membrane, and ii) loading enough protein drugs, and particularly high-dose proteins, into particles. To address these two technological problems, we recently developed a novel cholesterol tag (C-Tag)-based transmembrane transport system. This pilot study found that the C-Tag dramatically improved the cellular uptake of Fab (902-fold, vs. Fab alone) into living cells, indicating that it successfully achieved transmembrane transport. Moreover, C-Tag-mediated membrane transport was verified using micron-scale large unilamellar vesicles (LUVs, approximately 1.5 µm)-based particles. The C-Tagged Fab was able to permeate the liposomal bilayer and it greatly enhanced (a 10.1-fold increase vs. Fab alone) internalization of proteins into the LUV-based particles, indicating that the C-Tag loaded enough proteins into particles for use of high-dose proteins. Accordingly, we established a novel C-Tag-based transport system that has overcome the known technological difficulties of protein transmembrane delivery, and this might be a useful technology for drug development in the future.


Cholesterol , Liposomes , Pilot Projects , Biological Transport , Cholesterol/metabolism
2.
Virus Res ; 340: 199296, 2024 Feb.
Article En | MEDLINE | ID: mdl-38065302

The prevalence of multidrug-resistant highly virulent Klebsiella pneumoniae (MDR-hvKP) requires the development of new therapeutic agents. Herein, a novel lytic phage vB_KpnS_ZX4 against MDR-hvKP was discovered in hospital sewage. Phage vB_KpnS_ZX4 had a short latent period (5 min) and a large burst size (230 PFU/cell). It can rapidly reduce the number of bacteria in vitro and improve survival rates of bacteremic mice in vivo from 0 to 80 % with a single injection of 108 PFU. LysZX4, an endolysin derived from vB_KpnS_ZX4, exhibits potent antimicrobial activity in vitro in combination with ethylenediaminetetraacetic acid (EDTA). The antimicrobial activity of LysZX4 was further enhanced by the fusion of KWKLFKI residues from cecropin A (LysZX4-NCA). In vitro antibacterial experiments showed that LysZX4-NCA exerts broad-spectrum antibacterial activity against clinical Gram-negative bacteria, including MDR-hvKP. Moreover, in the mouse model of MDR-hvKP skin infection, treatment with LysZX4-NCA resulted in a three-log reduction in bacterial burden on the skin compared to the control group. Therefore, the novel phages vB_KpnS_ZX4 and LysZX4-NCA are effective reagents for the treatment of systemic and local MDR-hvKP infections.


Anti-Bacterial Agents , Bacteriophages , Mice , Animals , Anti-Bacterial Agents/pharmacology , Endopeptidases/pharmacology , Klebsiella pneumoniae
3.
Biosci Trends ; 17(3): 234-238, 2023 Jul 11.
Article En | MEDLINE | ID: mdl-37245987

Detecting and appropriately diagnosing a Mycobacterium tuberculosis infection remains technologically difficult because the pathogen commonly hides in macrophages in a dormant state. Described here is novel near-infrared aggregation-induced-emission luminogen (AIEgen) labeling developed by the current authors' laboratory for point-of-care (POC) diagnosis of an M. tuberculosis infection. The selectivity of AIEgen labeling, the labeling of intracellular M. tuberculosis by AIEgen, and the labeling of M. tuberculosis in sputum samples by AIEgen, along with its accuracy, sensitivity, and specificity, were preliminarily evaluated. Results indicated that this near-infrared AIEgen labeling had satisfactory selectivity and it labeled intracellular M. tuberculosis and M. tuberculosis in sputum samples. It had a satisfactory accuracy (95.7%), sensitivity (95.5%), and specificity (100%) for diagnosis of an M. tuberculosis infection in sputum samples. The current results indicated that near-infrared AIEgen labeling might be a promising novel diagnostic tool for POC diagnosis of M. tuberculosis infection, though further rigorous verification of these findings is required.


Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Humans , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/microbiology , Point-of-Care Systems , Tuberculosis/diagnostic imaging , Sputum/microbiology , Sensitivity and Specificity
4.
Biosci Trends ; 17(2): 85-116, 2023 May 15.
Article En | MEDLINE | ID: mdl-36928222

Over three years have passed since the COVID-19 pandemic started. The dangerousness and impact of COVID-19 should definitely not be ignored or underestimated. Other than the symptoms of acute infection, the long-term symptoms associated with SARS-CoV-2 infection, which are referred to here as "sequelae of long COVID (LC)", are also a conspicuous global public health concern. Although such sequelae were well-documented, the understanding of and insights regarding LC-related sequelae remain inadequate due to the limitations of previous studies (the follow-up, methodological flaws, heterogeneity among studies, etc.). Notably, robust evidence regarding diagnosis and treatment of certain LC sequelae remain insufficient and has been a stumbling block to better management of these patients. This awkward situation motivated us to conduct this review. Here, we comprehensively reviewed the updated information, particularly focusing on clinical issues. We attempt to provide the latest information regarding LC-related sequelae by systematically reviewing the involvement of main organ systems. We also propose paths for future exploration based on available knowledge and the authors' clinical experience. We believe that these take-home messages will be helpful to gain insights into LC and ultimately benefit clinical practice in treating LC-related sequelae.


COVID-19 , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Pandemics , Public Health
5.
Pathogens ; 11(12)2022 Nov 30.
Article En | MEDLINE | ID: mdl-36558779

The study of the interaction between temperate phages and bacteria is vital to understand their role in the development of human diseases. In this study, a novel temperate Escherichia coli phage, vB_EcoP_ZX5, with a genome size of 39,565 bp, was isolated from human fecal samples. It has a short tail and belongs to the genus Uetakevirus and the family Podoviridae. Phage vB_EcoP_ZX5 encodes three lysogeny-related proteins (ORF12, ORF21, and ORF4) and can be integrated into the 3'-end of guaA of its host E. coli YO1 for stable transmission to offspring bacteria. Phage vB_EcoP_ZX5 in lysogenized E. coli YO1+ was induced spontaneously, with a free phage titer of 107 PFU/mL. The integration of vB_EcoP_ZX5 had no significant effect on growth, biofilm, environmental stress response, antibiotic sensitivity, adherence to HeLa cells, and virulence of E. coli YO1. The ORF4 anti-repressor, ORF12 integrase, and ORF21 repressors that affect the lytic-lysogenic cycle of vB_EcoP_ZX5 were verified by protein overexpression. We could tell from changes of the number of total phages and the transcription level of phage genes that repressor protein is the key determinant of lytic-to-lysogenic conversion, and anti-repressor protein promotes the conversion from lysogenic cycle to lytic cycle.

6.
Pharmaceutics ; 14(9)2022 Sep 10.
Article En | MEDLINE | ID: mdl-36145665

A novel temperate phage vB_KpnP_ZX1 was isolated from hospital sewage samples using the clinically derived K57-type Klebsiella pneumoniae as a host. Phage vB_KpnP_ZX1, encoding three lysogen genes, the repressor, anti-repressor, and integrase, is the fourth phage of the genus Uetakevirus, family Podoviridae, ever discovered. Phage vB_KpnP_ZX1 did not show ideal bactericidal effect on K. pneumoniae 111-2, but TEM showed that the depolymerase Dep_ZX1 encoded on the short tail fiber protein has efficient capsule degradation activity. In vitro antibacterial results show that purified recombinant Dep_ZX1 can significantly prevent the formation of biofilm, degrade the formed biofilm, and improve the sensitivity of the bacteria in the biofilm to the antibiotics kanamycin, gentamicin, and streptomycin. Furthermore, the results of animal experiments show that 50 µg Dep_ZX1 can protect all K. pneumoniae 111-2-infected mice from death, whereas the control mice infected with the same dose of K. pneumoniae 111-2 all died. The degradation activity of Dep_ZX1 on capsular polysaccharide makes the bacteria weaken their resistance to immune cells, such as complement-mediated serum killing and phagocytosis, which are the key factors for its therapeutic action. In conclusion, Dep_ZX1 is a promising anti-virulence agent for the K57-type K. pneumoniae infection or biofilm diseases.

7.
Biosens Bioelectron ; 199: 113893, 2022 Mar 01.
Article En | MEDLINE | ID: mdl-34923308

Direct visual enumeration of viruses under dark-field microscope (DFM) using plasmon resonance probes (PRPs) is fast and convenient; however, it is greatly limited in the assay of real samples because of its inability to accurately identify false positives owing to non-specific adsorption. In this study, we propose an artificial intelligence (AI)-assisted DFM enumeration strategy for the accurate assay of Enterovirus A71 (an ultra-small human virus) using two PRPs; a 40 nm silver nanoparticle probe (SNP) that appears bright blue under DFM, and a 120 nm gold nanorod probe (GNP) that appears red under DFM. The capture chip was prepared by immobilizing the SNPs with antibodies on the glass to capture the target virus and to form dichromatic sandwich structures with the GNPs, followed by imaging under a dark field (DF). Subsequently, the DF images of the capture chip were subjected to a two-step screening: first, using image processing, and thereafter using the AI algorithm screening to eliminate false positive results and background noise. The results revealed that the data from the AI-assisted dual PRPs assay were highly consistent with those of quantitative PCR (qPCR), and that the sensitivity with a minimum detectable concentration of 3 copies/µL was 5 times higher than that of qPCR. The entire analysis was completed within 45 min. Therefore, our AI-assisted virus enumeration strategy with two DF PRPs holds great potential for ultra-sensitive and accurate quantification of viruses in real samples.


Biosensing Techniques , Metal Nanoparticles , Viruses , Artificial Intelligence , Gold , Humans , Silver
8.
Cancer Drug Resist ; 4(1): 223-232, 2021.
Article En | MEDLINE | ID: mdl-35582012

Aim: Ligand-targeted therapeutics are experiencing increasing use for treatment of human diseases due to their ability to concentrate a desired drug at a pathologic site while reducing accumulation in healthy tissues. For many ligand-targeted drug conjugates, a critical aspect of conjugate design lies in engineering release of the therapeutic payload to occur only after its internalization by targeted cells. Because disulfide bond reduction is frequently exploited to ensure intracellular drug release, an understanding of the redox properties of endocytic compartments can be critical to ligand-targeted drug design. While the redox properties of folate receptor trafficking endosomes have been previously reported, little is known about the trafficking of prostate-specific membrane antigen (PSMA), a receptor that is experiencing increasing use for drug targeting in humans. Methods: To obtain this information, we have constructed a PSMA-targeted fluorescence resonance energy transfer pair that reports on disulfide bond reduction by changing fluorescence from red to green. Results: We show here that this reporter exhibits rapid and selective uptake by PSMA-positive cells, and that reduction of its disulfide bond proceeds steadily but incompletely following internalization. The fact that maximal disulfide reduction reaches only ~50%, even after 24 h incubation, suggests that roughly half of the conjugates must traffic through endosomes that display no reducing capacity. Conclusion: As the level of disulfide reduction differs between PSMA trafficked and previously published folate trafficked conjugates, it also follows that not all internalizing receptors are translocated through similar intracellular compartments. Taken together, these data suggest that the efficiency of disulfide bond reduction must be independently analyzed for each receptor trafficking pathway when disulfide bond reduction is exploited for intracellular drug release.

9.
Front Chem ; 8: 36, 2020.
Article En | MEDLINE | ID: mdl-32117869

Polymer hydrogels are ideal bioprinting scaffolds for cell-loading and tissue engineering due to their extracellular-matrix-like structure. However, polymer hydrogels that are easily printed tend to have poor strength and fragile properties. The gradually polymerized reinforcement after hydrogel printing is a good method to solve the contradiction between conveniently printed and high mechanical strength requirement. Here, a new succinct approach has been developed to fabricate the printable composite hydrogels with tunable strength. We employed the HRP@GOx dual enzyme system to initiate the immediate crosslinking of chondroitin sulfate grafted with tyrosine and the gradual polymerization of monomers to form the composite hydrogels. The detailed two-step gelation mechanism was confirmed by the Fluorescence spectroscopy, Electron paramagnetic resonance spectroscopy and Gel permeation chromatography, respectively. The final composite hydrogel combines the merits of enzymatic crosslinking hydrogels and polymerized hydrogels to achieve adjustable mechanical strength and facile printing performance. The dual-enzyme regulated polymer composite hydrogels are the promising bioscaffolds as organoid, implanted materials, and other biomedical applications.

10.
Arthritis Res Ther ; 21(1): 143, 2019 06 07.
Article En | MEDLINE | ID: mdl-31174578

OBJECTIVES: Most therapies for autoimmune and inflammatory diseases either neutralize or suppress production of inflammatory cytokines produced by activated macrophages (e.g., TNFα, IL-1, IL-6, IL-17, GM-CSF). However, no approved therapies directly target this activated subset of macrophages. METHODS: First, we undertook to examine whether the folate receptor beta (FR-ß) positive subpopulation of macrophages, which marks the inflammatory subset in animal models of rheumatoid arthritis, might constitute the prominent population of macrophages in inflamed lesions in humans. Next, we utilized anti-FR-ß monoclonal antibodies capable of mediating antibody-dependent cell cytotoxicity (ADCC) to treat animal models of rheumatoid arthritis and peritonitis. RESULTS: Human tissue samples of rheumatoid arthritis, Crohn's disease, ulcerative colitis, idiopathic pulmonary fibrosis, nonspecific interstitial pneumonia, chronic obstructive pulmonary disease, systemic lupus erythematosus, psoriasis, and scleroderma are all characterized by dramatic accumulation of macrophages that express FR-ß, a protein not expressed on resting macrophages or any other healthy tissues. A monoclonal antibody to FR-ß accumulates specifically in inflamed lesions of murine inflammatory disease models and successfully treats such models of rheumatoid arthritis and peritonitis. More importantly, elimination of FR-ß-positive macrophages upon treatment with an anti-FR-ß monoclonal antibody promotes the departure of other immune cells, including T cells, B cells, neutrophils, and dendritic cells from the inflamed lesions. CONCLUSIONS: These data suggest that specific elimination of FR-ß-expressing macrophages may constitute a highly specific therapy for multiple autoimmune and inflammatory diseases and that a recently developed human anti-human FR-ß monoclonal antibody (m909) might contribute to suppression of this subpopulation of macrophages.


Antibodies, Monoclonal/therapeutic use , Arthritis, Rheumatoid/immunology , Folate Receptor 2/immunology , Immunity, Cellular , Macrophage Activation , Macrophages/metabolism , Animals , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Humans , Macrophages/immunology , Macrophages/pathology , Mice
11.
Biosci Trends ; 12(3): 298-308, 2018 Jul 17.
Article En | MEDLINE | ID: mdl-29899195

Our goal is to develop a switch-controlled approach to enable better control of reactivity and safety of chimeric antigen receptor (CAR)-T therapy for non-small-cell lung cancer (NSCLC). Lentiviral transduction was performed to generate anti-FITC CAR-T cells and target cells stably expressing either isoform of the folate receptor. Colorimetric-based cytotoxic assay, enzyme-linked immunosorbent assay, and multiparametric flow cytometry analysis were used to evaluate the specificity and activity of CAR-T cells in vitro. Human primary T cells stably expressing the fully human anti-FITC CAR were generated. Anti-FITC CAR-T cells displayed antigen-specific and folate-FTIC dependent reactivity against engineered A549-FRα and THP-1-FRß. The selective activation and proliferation of anti-FITC CAR-T cells in vitro stringently relied on the co-existence of folate-FITC and FR- expressing target cells and was dose-titratable with the folate-FITC switch. The excellent in vitro efficacy and specificity of an adaptor-controlled CAR-T therapy to target both tumor cells and tumor-associated macrophages in NSCLCs were validated.


Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/therapy , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/transplantation , A549 Cells , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Flow Cytometry , Folate Receptor 1/immunology , Folate Receptor 1/metabolism , HEK293 Cells , HL-60 Cells , Humans , Jurkat Cells , Lentivirus/genetics , Ligands , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Macrophages/immunology , T-Lymphocytes/immunology , Transduction, Genetic , Tumor Microenvironment/immunology
12.
Leuk Lymphoma ; 59(12): 2982-2989, 2018 12.
Article En | MEDLINE | ID: mdl-29616859

Receptor-targeted delivery of imaging and therapeutic agents has emerged as an attractive strategy to diagnosis and treat many diseases including cancer. One of the most well-studied receptors for targeted therapies is the folate receptor (FR) family. FR-α and FR-ß are present on many cancers with little expression in normal tissues; leading to the testing of at least six folate-targeted drugs in human clinical trials for various cancers. However, the expression of FR in blood cancers has not been fully explored with no reports of FR expression in myelomas. Herein, we report the expression of both FR-α and FR-ß on CD138 + plasma cells isolated from patients with multiple myeloma. In addition, all-trans retinoic acid was shown to increase the levels of FR-α and FR-ß in two myeloma cell lines. Altogether, this data suggests that folate-targeted therapies for the treatment of multiple myeloma warrants further investigation.


Antineoplastic Agents/pharmacology , Folate Receptor 1/metabolism , Folate Receptor 2/metabolism , Multiple Myeloma/pathology , Plasma Cells/drug effects , Tretinoin/pharmacology , Antineoplastic Agents/therapeutic use , Bone Marrow/pathology , Cell Line, Tumor , Gene Expression Regulation/drug effects , Humans , Multiple Myeloma/drug therapy , Plasma Cells/metabolism , Syndecan-1/metabolism , Up-Regulation/drug effects
13.
Virol Sin ; 33(3): 227-233, 2018 Jun.
Article En | MEDLINE | ID: mdl-29654554

Little data is available on the evaluation of the occurrence rates of Epstein-Barr virus (EBV) in saliva and relationship with highly active antiretroviral therapy (HAART) use in HIV/AIDS patients in China. We conducted a retrospective cohort study of EBV serological tests for HIV/AIDS patients who were treated in the hospitals for infectious diseases in Wuxi and Shanghai, China from May 2016 to April 2017. The EBV-seropositive samples were identified by ELISA. EBV-specific primers and probes were used for the quantitative detection of viral DNA from saliva via quantitative real-time polymerase chain reaction. CD4 cell counts of the HIV/AIDS patients were detected by a flow cytometry. A total of 372 HIV/AIDS patients were ultimately selected and categorized for this retrospective cohort study. For EBV IgG and IgM, the HIV/AIDS HAART use (H) and non-HAART use (NH) groups had significantly higher seropositive rates than the HIV-negative control group. The HIV/AIDS (NH) group had the highest seropositive rate (IgG, 94.27%; IgM, 68.98%) and the highest incidence of EBV reactivation or infection. For salivary EBV DNA-positive rates and quantities, the HIV/AIDS (H) (73.69%) and the HIV/AIDS (NH) (100%) groups showed significantly higher values than the HIV-negative control group (35.79%, > twofold). Further, the salivary EBV DNA-negative population had significantly higher CD4 cell counts than the EBV DNA-positive population in the HIV/AIDS (H) group and the HIV/AIDS (NH) groups. Thus, HAART use is beneficial in decreasing the EBV salivary shedding in HIV/AIDS patients and indirectly decreases EBV transmission risk.


Acquired Immunodeficiency Syndrome/drug therapy , Antiretroviral Therapy, Highly Active/methods , Epstein-Barr Virus Infections/drug therapy , HIV Infections/drug therapy , Saliva/virology , Adolescent , Adult , CD4 Lymphocyte Count , DNA, Viral/genetics , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Retrospective Studies , Seroepidemiologic Studies , Viral Load , Virus Shedding/drug effects , Young Adult
14.
Infect Dis Poverty ; 7(1): 25, 2018 Mar 24.
Article En | MEDLINE | ID: mdl-29587840

BACKGROUND: Tuberculosis infection still places a great burden on HIV-infected individuals in China and other developing countries. Knowledge of the survival of HIV-infected patients with pulmonary tuberculosis (PTB) would provide important insights for the clinical management of this population, which remains to be well described in current China. METHODS: HIV-infected patients with PTB admitted to Shanghai Public Health Clinical Center from January 2011 to December 2015 were retrospectively enrolled. In this cohort, the survival prognosis was estimated by the Kaplan-Meier method, while univariate and multivariate Cox proportional hazards models were used to determine the risk factors affecting mortality. RESULTS: After reviewing 4914 admitted patients with HIV infection, 359 PTB cases were identified. At the time of PTB diagnosis, the patients' median CD4+ T cell count was 51 /mm3 (IQR: 23-116), and 27.30% of patients (98/359) were on combination antiretroviral therapy (cART). For the 333 cases included in the survival analysis, the overall mortality was 15.92% (53/333) during a median 27-month follow-up. The risk factors, including age older than 60 years (HR: 3.18; 95% CI: 1.66-6.10), complication with bacterial pneumonia (HR: 2.64; 95% CI: 1.30-5.35), diagnosis delay (HR: 2.60; 95% CI: 1.42-4.78), CD4+ T cell count less than 50/mm3 (HR: 2.38; 95% CI: 1.27-4.43) and pulmonary atelectasis (HR: 2.20; 95% CI: 1.05-4.60), might independently contribute to poor survival. Among patients without cART before anti-TB treatment, the later initiation of cART (more than 8 weeks after starting anti-TB treatment) was found to increase the mortality rate (OR: 4.33; 95% CI: 1.22-15.36), while the initiation of cART within 4-8 weeks after starting anti-TB treatment was associated with the fewest deaths (0/14). CONCLUSIONS: The subjects in this study conducted in the cART era were still characterized by depressed immunological competence and low rates of cART administration, revealing possible intervention targets for preventing TB reactivation in HIV-infected individuals under current circumstances. Furthermore, our study indicated that the timely diagnosis of PTB, prevention of secondary bacterial pneumonia by prophylactic management and optimization of the timing of cART initiation could have significant impacts on decreasing mortality among HIV/PTB co-infected populations. These findings deserve further prospective investigations to optimize the management of HIV/PTB-co-infected patients. TRIAL REGISTRATION: NCT01344148 , Registered September 14, 2010.


Coinfection/mortality , HIV Infections/mortality , Tuberculosis, Pulmonary/mortality , Adult , China/epidemiology , Cohort Studies , Coinfection/diagnosis , Coinfection/drug therapy , Female , HIV Infections/diagnosis , HIV Infections/drug therapy , Humans , Male , Middle Aged , Prognosis , Proportional Hazards Models , Retrospective Studies , Risk Factors , Survival , Survival Analysis , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/drug therapy
15.
Oncotarget ; 9(4): 4485-4495, 2018 Jan 12.
Article En | MEDLINE | ID: mdl-29435118

A number of folate receptor (FR) targeted small molecular drugs and monoclonal antibodies have been introduced into clinical trials to treat FR positive cancers. Because the therapeutic efficacy of these drugs depends prominently on the level of FR-α expression on the cancer cells, patients have been commonly selected for FR-targeted therapies based on the intensity of a folate-targeted radioimaging agent. Unfortunately, uptake of such imaging agents can be mediated by both major isoforms of the folate receptor, FR-α and FR-ß. Logically, if the FR positive cell population in a tumor mass is dominated by FR-ß positive macrophages, patients could be selected for therapy that have few FR-expressing cancer cells. Although several IHC studies have examined expression of either FR-α or FR-ß, no study to date has investigated expression of both FR-α and FR-ß in the same tumor mass. Herein, we utilize monoclonal antibodies specific for FR-α (mAb343) and FR-ß (m909) to query each isoform's expression in a range of cancers. We show that lung and pancreatic adenocarcinomas express the full spectrum of FR-α and FR-ß combinations with ~76% of lung adenocarcinomas expressing both FR-α and FR-ß while pancreatic cancers express primarily FR-ß. Thus, while folate-targeted imaging of lung cancer patients might accurately reflect the expression of FR-α on lung cancer cells, imaging of pancreatic cancer patients could mislead a physician into treating a nonresponding patient. Overall, these data suggest that an independent analysis of both FR-α and FR-ß should be obtained to predict the potential efficacy of a folate-targeted drug.

16.
Free Radic Biol Med ; 115: 191-201, 2018 02 01.
Article En | MEDLINE | ID: mdl-29221988

Mounting evidence has strongly implicated oxidative stress in the development of cardiac dysfunction, and myocardial apoptosis contributes to the pathogenesis of heart failure. Quantitative cardiac proteomics data revealed that pressure load by TAC resulted in a significant decline in mitochondrial metabolic activity, where TIIA (Tanshinone IIA sulfonate) treatment reversed it in vivo, which might be mediated by Nrf2. In NRVMs, TIIA treatment ameliorated H2O2-induced caspase-3/9 activations through the suppression of p38 and mTOR signaling pathways, where caspase-mediated cleavage of YY1 and PARP resulted in the defects in mitochondrial biogenesis and DNA repair, and this event finally led to cardiomyocyte apoptosis. Mass spectrometry analysis showed that TIIA hydrophobically interacted with Keap1 (the cytoplasmic repressor of Nrf2) and induced its degradation in vitro. Site-directed mutagenesis of Keap1 identified V122/V123/I125 to be the critical residues for the TIIA-induced de-dimerization and degradation of Keap1. Besides, TIIA treatment also epigenetically up-regulated Nrf2 gene transcription, where it hypomethylated the first 5 CpGs of Nrf2 promoter. Furthermore, cardiac-specific Nrf2 knockout mice exhibited the significantly dampened anti-apoptotic effects of TIIA.


Apoptosis/drug effects , Cardiotonic Agents/therapeutic use , Heart Failure/drug therapy , Kelch-Like ECH-Associated Protein 1/metabolism , Myocardium/metabolism , NF-E2-Related Factor 2/metabolism , Phenanthrenes/therapeutic use , Animals , Cells, Cultured , DNA Methylation , Disease Models, Animal , Epigenesis, Genetic , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardium/pathology , NF-E2-Related Factor 2/genetics , Oxidative Stress/drug effects , Promoter Regions, Genetic
17.
Front Microbiol ; 9: 3352, 2018.
Article En | MEDLINE | ID: mdl-30761121

Gut microbiota dysbiosis, which has been linked to many neurological diseases, is common in HIV infection. However, its role in the pathogenesis of neurocognitive impairment is still not established. In this study, a total of 85 HIV infected subjects, naïve to antiretroviral therapy, were classified into two groups-those with HIV-associated neurological diseases (HAND) and those without, using the Montreal Cognitive Assessment (MoCA) test. Fecal samples were collected from all subjects and microbiota were analyzed by 16S rRNA amplicon sequencing. Subjects with HAND were older (P < 0.001), with lower levels of education (P = 0.002), lower CD4 T-cell counts (P = 0.032), and greater heterosexual preference (P < 0.001), than those without HAND. Gut microbiota from subjects with HAND showed significantly lower α-diversity compared to gut microbiota from subjects without HAND (Shannon index, P = 0.003). To exclude confounding bias, 25 subjects from each group, with comparable age, gender, CD4 T-cell count, educational level and sexual preference were further analyzed. The two groups showed comparable α-diversity (for SOB index, Shannon index, Simpson index, ACE index, and Chao index, all with P-value > 0.05) and ß-diversity (ANOSIM statistic = 0.010, P = 0.231). There were no significant differences in microbiota composition between the two groups after the correction for a false discovery rate. Consistently, microbiota from the two groups presented similar predictive functional profiles. Gut microbiota dysbiosis is not independently associated with neurocognitive impairment in people living with HIV.

18.
BMC Infect Dis ; 17(1): 285, 2017 04 19.
Article En | MEDLINE | ID: mdl-28420350

BACKGROUNDS: There are few studies focus on the factors underlying the late initiation of ART in China. We analyzed the trends in the median CD4 cell counts among different patient groups over time and the risk factors for the late initiation of ART in Shanghai, China. METHODS: A retrospective cross-sectional survey was made in the Department of Infectious Disease of Shanghai Public Health Clinical Center which is a designated diagnosis and treatment center for HIV-positive patients in Shanghai during the period of January 1st, 2008--June 30th, 2014. Late ART initiation was defined as a CD4 cell count <200 cells/mm3 or having a clinical AIDS diagnosis prior to ART initiation. Trends in the median CD4 cell count at ART initiation and the proportion of late ART initiation by year were evaluated using Spearman's correlations and Chi-squared methods, respectively. We used a logistic regression model to analyze the risk factors for late ART initiation. The related factors collected in the multivariate model were the patient's age, gender, infection routes and marital status. RESULTS: A total of 3796 patients were analyzed in this study, with a median baseline CD4 cell count of 205 cells/mm3 [interquartile range: 75-287]. The median CD4 cell counts of patients initiating ART late increased from 76 cells/mm3 in 2008 to 103 cells/mm3 in 2014 (p < 0.001), and the proportion of late ART initiation decreased from 80% to 45% (p < 0.001). The risk factors for late ART initiation were male gender, heterosexual transmission and older age (>30 years) (p < 0.001). CONCLUSIONS: Notable improvements were made in the median CD4 cell count at ART initiation and the proportion of late ART initiation from 2008 to 2014. However, persons with high risk of HIV exposure who are male, older even heterosexual orientation should be given more opportunities to receive frequently screening, earlier diagnoses and timely treatment.


Anti-Retroviral Agents/therapeutic use , HIV Infections/drug therapy , Adolescent , Adult , Aged , Aged, 80 and over , CD4 Lymphocyte Count , China , Cross-Sectional Studies , Female , HIV Infections/diagnosis , HIV Infections/pathology , HIV Seropositivity , Heterosexuality , Humans , Logistic Models , Male , Middle Aged , Retrospective Studies , Risk Factors , Young Adult
19.
Biosci Trends ; 11(1): 62-68, 2017 Mar 22.
Article En | MEDLINE | ID: mdl-28132999

Globally, the overall mortality rate among HIV-infected patients has significantly declined during the HAART era. Deaths among HIV-infected inpatients need to be characterized in order to formulate intervention strategies to further improve medical care for this population and their prognosis. In the current study, deaths among HIV-infected inpatients from 2006 to 2015 at a medical center for HIV infection and AIDS patient care in Shanghai, China were retrospectively analyzed. Trends in mortality rates and the proportion of deaths caused by AIDS or non-AIDS-related illnesses were evaluated. A bivariate analysis was performed to identify the demographic and clinical factors associated with AIDS or non-AIDS-related deaths among HIV-infected inpatients. Among 6,473 HIV-infected patients who were discharged from 2006 to 2015, 326 deaths (5.04%) were identified. The yearly mortality rate declined significantly over time (χ2 = 34.41, p < 0.001). Results revealed that most deaths were attributed to AIDS-related illnesses (76.9 %, 233/303), and the proportion of causes of death did not change significantly over time (χ2 = 13.847, p = 0.127). Bivariate analysis identified characteristic factors associated with AIDS-related mortality. Compared to patients who died of non-AIDS illnesses, patients who died of AIDS-related illnesses had a CD4+ T cell count lower than 50 cells/µL (OR 4.587, 2.377-8.850) and fewer liver (OR 0.391, 0.177-0.866) or renal comorbidities (OR 0.188, 0.067-0.523) on admission. Results indicated that the overall in-hospital mortality rate among HIV-infected patients has declined over the past decade. However, AIDS-related illnesses were still the major causes of deaths among HIV-infected inpatients, suggesting that further efforts are needed to improve AIDS care in China.


Antiretroviral Therapy, Highly Active , HIV Infections/drug therapy , HIV Infections/mortality , Adult , Cause of Death , China/epidemiology , Comorbidity , Demography , Female , Humans , Inpatients/statistics & numerical data , Male , Middle Aged , Multivariate Analysis
20.
Cell Mol Immunol ; 14(9): 783-791, 2017 Sep.
Article En | MEDLINE | ID: mdl-27665946

Interleukin-37 (IL-37) is an inhibitory member of the IL-1 family of cytokines. We previously found that balanced selection maintains common variations of the human IL37 gene. However, the functional consequences of this selection have yet to be validated. Here, using cells expressing exogenous IL-37 variants, including IL-37 Ref and IL-37 Var1 and Var2, we found that the three variants of IL-37 exhibited different immunoregulatory potencies in response to immune stimulation. The protein level of IL-37 Var2 was found to be significantly less than that of IL-37 Ref or Var1, despite the comparable mRNA levels of all three variants. Further study showed that IL-37 Var2 was rapidly degraded by a proteasome-dependent mechanism mediated by enhanced polyubiquitination, leading to a transient upregulation of IL-37 Var2 after immune stimulation. Finally, when ectopically expressed in cells, human IL-37 Var2 exerted less inhibition on proinflammatory cytokine production than did other IL-37 variants. Conversely, purified extracellular IL-37 variant proteins demonstrated comparable inhibitory abilities in vitro. In conclusion, our study reveals that common genetic variants of IL37 lead to different immune-inhibitory potencies, primarily as a result of differences in IL-37 protein stability, suggesting the possible involvement of these variants in various human diseases.


Interleukin-1/genetics , Interleukin-1/metabolism , Amino Acid Sequence , Cell Line , Genetic Heterogeneity , Heterozygote , Humans , Interleukin-1/chemistry , Interleukin-6/metabolism , Phenotype , Polyubiquitin/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Ubiquitination , Up-Regulation
...