Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int Wound J ; 21(4): e14862, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572823

RESUMEN

Oral mucosa is an ideal model for studying scarless wound healing. Researchers have shown that the key factors which promote scarless wound healing already exist in basal state of oral mucosa. Thus, to identify the other potential factors in basal state of oral mucosa will benefit to skin wound healing. In this study, we identified eight gene modules enriched in wound healing stages of human skin and oral mucosa through co-expression analysis, among which the module M8 was only module enriched in basal state of oral mucosa, indicating that the genes in module M8 may have key factors mediating scarless wound healing. Through bioinformatic analysis of genes in module M8, we found IGF2 may be the key factor mediating scarless wound healing of oral mucosa. Then, we purified IGF2 protein by prokaryotic expression, and we found that IGF2 could promote the proliferation and migration of HaCaT cells. Moreover, IGF2 promoted wound re-epithelialization and accelerated wound healing in a full-thickness skin wound model. Our findings identified IGF2 as a factor to promote skin wound healing which provide a potential target for wound healing therapy in clinic.


Asunto(s)
Piel , Cicatrización de Heridas , Humanos , Piel/metabolismo , Repitelización , Mucosa Bucal , Fibroblastos/metabolismo , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo
2.
Pestic Biochem Physiol ; 196: 105595, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945245

RESUMEN

Fusarium solani is responsible for causing root rot in various crops, resulting in wilting and eventual demise. Phenamacril, a specific inhibitor of myosin5 protein, has gained recognition as an effective fungicide against a broad spectrum of Fusarium species. It has been officially registered for controlling Fusarium diseases through spray application, root irrigation, and seed dipping. In this study, phenamacril was observed to exhibit negligible inhibitory effects on F. solani causing crop root rot, despite the absence of prior exposure to phenamacril. Considering the high selectivity of phenamacril, this phenomenon was attributed to intrinsic resistance and further investigated for its underlying mechanism. Sequence alignment analysis of myosin5 proteins across different Fusarium species revealed significant differences at positions 218 and 376. Subsequent homology modeling and molecular docking results indicated that substitutions T218S, K376M, and T218S&K376M impaired the binding affinity between phenamacril and myosin5 in F. solani. Mutants carrying these substitutions were generated via site-directed mutagenesis. A phenamacril-sensitivity test showed that the EC50 values of mutants carrying T218S, K376M, and T218S&K376M were reduced by at least 6.13-fold, 9.66-fold, and 761.90-fold respectively compared to the wild-type strain. Fitness testing indicated that mutants carrying K376M or T218S&K376M had reduced sporulation compared to the wild-type strain. Additionally, mutants carrying T218S exhibited an enhanced virulence compared to the wild-type strain. However, there were no significant differences observed in mycelial growth rates between the mutants and the wild-type strain. Thus, the intrinsic differences observed at positions 218 and 376 in myosin5 between F. solani and other Fusarium species are specifically associated with phenamacril resistance. The identification of these resistance-associated positions in myosin5 of F. solani has significantly contributed to the understanding of phenamacril resistance mechanisms, thereby discouraging the use of phenamacril for controlling F. solani.


Asunto(s)
Fungicidas Industriales , Fusarium , Fungicidas Industriales/farmacología , Simulación del Acoplamiento Molecular
3.
Pest Manag Sci ; 78(8): 3394-3403, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35514230

RESUMEN

BACKGROUND: Cucumber fruit rot (CFR) caused by Fusarium incarnatum is a devastating fungal disease in cucumber. In recent years, CFR has occurred frequently, resulting in serious yield and quality losses in China. Phenamacril exhibits a specific antifungal activity against Fusarium species. However, no data for phenamacril against F. incarnatum is available. RESULTS: The sensitivity of 80 F. incarnatum strains to phenamacril was determined. The half maximal effective concentration (EC50 ) values ranged from 0.1134 to 0.3261 µg mL-1 with a mean EC50 value of 0.2170 ± 0.0496 µg mL-1 . A total of seven resistant mutants were obtained from 450 mycelial plugs by phenamacril-taming on potato dextrose agar (PDA) plates with 10 µg mL-1 of phenamacril, and the resistant frequency was 1.56%. Phenamacril-resistant mutants showed decreased mycelial growth, conidiation and virulence as compared with the corresponding wild-type strains, indicating that phenamacril resistance suffered a fitness penalty in F. incarnatum. In addition, using sequence analysis, the point mutations of S217P or I424S were discovered in Fimyosin-5 (the target of phenamacril). The site-directed mutagenesis of the S217P, P217S, I424S and S424I substitutions were constructed to reveal the relationship between the point mutations and phenamacril resistance. The results strongly demonstrated that the mutations of S217P and I424S in Fimyosin-5 conferred phenamacril-resistance in F. incarnatum. CONCLUSION: Phenamacril-resistant mutants were easily induced and their resistance level was high. The S217P or I424S substitutions in Fimyosin-5 conferring phenamacril resistance were detected and futherly verified by transformation assay with site-directed mutagenesis. Thus, we proposed that the resistance development of F. incarnatum to phenamacril is high risk. © 2022 Society of Chemical Industry.


Asunto(s)
Fungicidas Industriales , Fusarium , Cianoacrilatos , Fungicidas Industriales/farmacología , Fusarium/efectos de los fármacos , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...