Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 7(9): 6306-6312, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39236263

RESUMEN

Structure engineering is of great importance to enhance the carrier separation efficiency of multiphoton absorption (MPA) materials for near-infrared (NIR) light-driven reactive oxygen species (ROS) generation. In this study, the MPA-responsive potassium/cyano group-functionalized graphitic carbon nitride was investigated, demonstrating charge redistribution and improved carrier separation efficiency by density functional theory calculations and experimental results. With various types of boosted ROS generation under UV-vis or NIR-II light irradiation, the potassium/cyano group-functionalized graphitic carbon nitride could achieve efficient multiphoton photodynamic therapy after reducing the particle size. This study developed a simple strategy to manipulate charge distribution for booting NIR light-activated ROS generation in efficient multiphoton photodynamic therapy.


Asunto(s)
Materiales Biocompatibles , Grafito , Rayos Infrarrojos , Ensayo de Materiales , Compuestos de Nitrógeno , Tamaño de la Partícula , Especies Reactivas de Oxígeno , Grafito/química , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/química , Compuestos de Nitrógeno/química , Materiales Biocompatibles/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Humanos , Fotoquimioterapia , Nitrilos/química
2.
J Phys Chem A ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284747

RESUMEN

Three-center two-electron bridging bonding plays a vital role in rationalizing structures and stabilities of certain molecules. Herein, the π electron rule of pyrene (C16H10) was unraveled based on a newly proposed two-dimensional (2D) superatomic-molecule theory, where the superatomic sextet rule was regarded as a π electron counting target. C16H10 can be taken as a ◊N2◊F2 superatomic molecule, where ◊N and ◊F denote 2D superatoms bearing 3π and 5π electrons, respectively. Interestingly, it represents the first 2D superatomic halogen-bridge molecule, which realizes π electronic shell-closure via two three-supercenter two-electron bridging bonds. Additionally, a N-doped nanoporous graphene with a wide band gap (1.22 eV) was designed based on C16H10, which can be considered as a periodic aggregate of 2D superatomic wires composed of 2π-◊C and bridging ◊F superatoms. This work enriches the 2D superatomic-molecule chemistry and provides a practicable bottom-up assemble approach to obtain 2D functional materials with tunable band gaps.

3.
J Phys Chem Lett ; 15(21): 5754-5760, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38776121

RESUMEN

Triangulene (C22H122•), a nonclassic non-Kekulé polycyclic aromatic hydrocarbon, is identified to be aromatic by structural and magnetic criteria. However, its aromatic origin remains confusing. Herein, the aromatic rules of C22H122• and its two charged counterparts C22H122+/2- were investigated on the basis of a recently developed two-dimensional (2D) superatomic-molecule theory. [C22H12]2+/2•/2- exhibit obvious local aromatic characters and can be regarded as [◊N3◊O3]+, [◊N3◊O3]-, and ◊N3◊F3 superatomic molecules, respectively, where ◊N, ◊O, and ◊F denote 2D superatoms bearing 3π, 4π, and 5π electrons. [C22H12]2+/2- realize electronic shell closure via superatomic lone pairs and covalent bonds, mimicking simple molecules, whereas the α-π and ß-π electrons in C22H122• follow the superatomic bonding patterns of C22H122- and C22H122+, respectively. Furthermore, based on the local character in 2D superatomic molecules, a doped nanoporous graphene, namely, C9N12B monolayer, was predicted. The material possesses excellent dynamical and thermodynamical stability, as well as a wide band gap of 2.77 eV, positioning it as a promising 2D material for future electronic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA