Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 15(6): 2798-2805, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36662239

RESUMEN

The operational stability of reduced-dimensional metal halide perovskites (RD-MHPs) lags far behind the practical requirements for future high-definition displays. Thereinto, the electron durability of RD-MHPs plays a critical role in stable LEDs during continuous operation, however, it still lacks adequate research and a deep understanding. Herein, the electron durability and deterioration mechanism of phenethylammonium (PEA+)-modified RD-MHPs are systematically conducted through an in situ photoelectron spectroscopy technique by implementing tunable electron-beam radiation to simulate device operation. The formation of detrimental metallic lead (Pb0) caused by the reduction of lead ions (Pb2+) is observed along with the decomposition of PEA+ under electron-beam radiation, thereby changing the photophysical properties of PEA+-doped RD-MHPs. These results provide deep insight into the process of how injected electrons affect the performance of PEA+-doped perovskite LEDs, which may also provide potential guidance for designing robust and effective organic spacers for RD-MHPs.

2.
Adv Sci (Weinh) ; 8(19): e2102213, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34453782

RESUMEN

While tremendous progress has recently been made in perovskite light-emitting diodes (PeLEDs), large-area blue devices feature inferior performance due to uneven morphologies and vast defects in the solution-processed perovskite films. To alleviate these issues, a facile and reliable interface engineering scheme is reported for manipulating the crystallization of perovskite films enabled by a multifunctional molecule 2-amino-1,3-propanediol (APDO)-triggered "anchoring effect" at the grain-growth interface. Sky-blue perovskite films with large-area uniformity and low trap states are obtained, showing the distinctly improved radiative recombination and hole-transport capability. Based on the APDO-induced interface engineering, synergistical boost in device performance is achieved for large-area sky-blue PeLED (measuring at 100 mm2 ) with a peak external quantum efficiency (EQE) of 9.2% and a highly prolonged operational lifetime. A decent EQE up to 6.1% is demonstrated for the largest sky-blue device emitting at 400 mm2 .

3.
ACS Appl Mater Interfaces ; 13(21): 24692-24701, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34008958

RESUMEN

Excess lead iodide (PbI2) plays a crucial role in passivating the defects of perovskite films and boosting the power conversion efficiency (PCE) of perovskite solar cells (PSCs). However, the photolysis of PbI2 is easily triggered by light illumination, which accelerates the decomposition of perovskite materials and weakens the long-term stability of PSCs. Herein, the high light tolerance of lead iodide (PbI2) is reported by introducing an electron-donor molecule, namely, 2-thiophenecarboxamide (2-TCAm), to strengthen the [PbX6]4- frame. Characterization reveals that the retarded decomposition of PbI2 is attributed to the interactions between Pb2+ and the organic functional groups in 2-TCAm as well as the optimized distribution of PbI2. The crystallization and morphology of 2-TCAm-doped perovskite films are improved simultaneously. The 2-TCAm-based PSCs achieve a 16.8% increase in PCE and nearly 12 times increase in the lifetime as compared to the reference device. The demonstrated method provides insight into the stability of PbI2 and its influence on PSCs.

4.
Nanoscale ; 13(1): 340-348, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33346313

RESUMEN

Organic-inorganic hybrid lead halide perovskites are potential candidates for next-generation light-emitting diodes (LEDs) in terms of tunable emission wavelengths, high electroluminescence efficiency, and excellent color purity. However, the device performance is still limited by severe non-radiative recombination losses and operational instability due to a high degree of defect states on the perovskite surface. Here, an effective surface engineering method is developed via the assistance of guanidinium iodide (GAI), which allows the formation of surface-2D heterophased perovskite nanograins and surface defect passivation due to the bonding with undercoordinated halide ions. Efficient and stable red-emission LEDs are realized with the improved optoelectronic properties of GAI-modified perovskite nanograins by suppressing the trap-mediated non-radiative recombination loss. The champion device with a high color purity at 692 nm achieves an external quantum efficiency of 17.1%, which is 2.3 times that of the control device. Furthermore, the operational stability is highly improved, showing a half-lifetime of 563 min at an initial luminance of 1000 cd m-2. The proposed GAI-assisted surface engineering is a promising approach for defect passivation and phase engineering in perovskite films to achieve high-performance perovskite LEDs.

5.
ACS Appl Mater Interfaces ; 12(37): 42369-42377, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32840343

RESUMEN

Mixed A-site engineering is an emerging strategy to overcome the difficulties in realizing high-quality perovskite films together with high ambient stability. Particularly, the α-FACsPbI3-based hybrid perovskites have been considered as a promising candidate for solar cell applications. However, the degradation mechanism of α-FACsPbI3 hybrid perovskites induced by light illumination remains unclear. Here, the illumination-caused instability of α-FACsPbI3 hybrid perovskites is investigated using various surface detection technologies, including photoelectron spectroscopy, scanning electron microscopy, and grazing incidence X-ray diffraction. The experimental findings reveal that the A-site vacancies arise from the migration of Cs+ cations from the perovskite surface into the bulk under light illumination, while their content is dependent on the light energy. The visible light enlarges the crystal lattice on the perovskite surface, leading to the Cs+ cation migration along with the lattice distortion of the PbI64- octahedron and phase separation. However, the ultraviolet light further causes a stronger interaction between FA+ and [PbI6]4-, leading to the partial decomposition of [PbI6]4- into Pb0 and I-. These results enrich the photodegradation mechanism, guiding the design of efficient and stable perovskite solar cells through surface passivation to suppress the Cs+ cation migration and to increase the octahedron dissociation energy.

6.
ACS Appl Mater Interfaces ; 12(37): 41596-41604, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32842734

RESUMEN

All-inorganic perovskite cesium lead iodide/bromide (CsPbI2Br) is considered as a robust absorber for perovskite solar cells (PSCs) because of its excellent thermal stability that guarantees its long-term operation stability. Efficient CsPbI2Br PSCs are available when obtaining low energy loss, which needs efficient charge generation, less charge recombination, and balanced charge extraction. However, numerous traps in perovskites hinder the photon-electron conversion process. Herein, hierarchical manipulation of charge recombination is proposed for CsPbI2Br PSCs featuring low energy loss. Nonselective trap reduction and selective halogen vacancy passivation are performed using 2,2'-(ethylenedioxy)diethylamine and phenylbutylammonium iodide for the bottom and top contacts, respectively. Because of all-around suppressed charge recombination, balanced charge extraction and suppressed hysteresis are realized. The champion PSC achieves an open-circuit voltage of 1.30 eV, a fill factor of 80.2%, and a power conversion efficiency of 16.6% that is 28.6% higher than that of the reference device. Moreover, the thermostability of PSCs is simultaneously enhanced because of the limited defect-assisted degradation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...