Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Fundam Res ; 4(1): 13-20, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38933848

RESUMEN

Defining and measuring resilience using a unified framework has been a topic of intense research. This article presents a perspective on how resilience could be quantitatively assessed through a set of indices. It starts with a brief explanation of resilience in the context of supply chain and a quick summary of existing quantitative measures of resilience. It then discusses how resilience could be quantified in a constructive manner so that the resulting metrics are representative of the performance throughout the system's life cycle. In particular, it is proposed that resilience should be evaluated according to different time periods, i.e. before, during and after a disruption has occurred. Four dimensions of resilience, namely reliability, robustness, recovery and reconfigurability, can then be used to make up a set of indices for resilience. For numerical illustration, these indices are computed based on recovery data arising from Hurricane Sandy in October 2012. Finally, it is postulated that resilience will be the performance metric that complements productivity and sustainability as the third pillar for measuring success of organizations, and in turn, that of sovereign countries in their quests for developing smart cities.

2.
J Colloid Interface Sci ; 674: 547-559, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38943915

RESUMEN

The targeted conversion of toxic nitroarenes to corresponding aminoarenes presents significant promise in simultaneously addressing environmental pollution concerns and producing value-added fine chemicals. In this study, we synthesize a 0D/2D ZnIn2S4 homojunction (CH-ZnIn2S4) by in situ growth of cubic ZnIn2S4 (C-ZnIn2S4) quantum dots onto the surface of ultrathin hexagonal ZnIn2S4 (H-ZnIn2S4) nanosheets for photocatalytic reduction of nitroarenes to aminoarenes using water as a hydrogen donor. The optimal performance of photocatalytic nitro reduction over the 0D/2D CH-ZnIn2S4 homojunction reaches 96.1% within 20 min of visible light irradiation, which is 2.45 and 1.52 times than that of C-ZnIn2S4 (39.3%) and H-ZnIn2S4 (63.3%), respectively. The improved photocatalytic performance can be attributed to the formation of a step-type S-scheme homojunction, characterized by identity chemical composition and natural lattice matching. The configuration enables continuous band bending and a low energy barrier of charge transportation, benefiting the charge transfer across the interface while maximizing their redox capabilities. Furthermore, the 2D structure of H-ZnIn2S4 nanosheets offers abundant surface sites to immobilize the 0D C-ZnIn2S4 that provides ample exposed active sites with low overpotential for HER, thereby ensuring high hydrogenation reduction activity of nitroarenes. The study is expected to inspire further interest in the reasonable design of homojunction structures for efficient and sustainable photocatalytic redox reactions.

3.
Front Immunol ; 15: 1402817, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803502

RESUMEN

Sterile inflammation, characterized by a persistent chronic inflammatory state, significantly contributes to the progression of various diseases such as autoimmune, metabolic, neurodegenerative, and cardiovascular disorders. Recent evidence has increasingly highlighted the intricate connection between inflammatory responses and cardiovascular diseases, underscoring the pivotal role of the Stimulator of Interferon Genes (STING). STING is crucial for the secretion of type I interferon (IFN) and proinflammatory cytokines in response to cytosolic nucleic acids, playing a vital role in the innate immune system. Specifically, research has underscored the STING pathway involvement in unregulated inflammations, where its aberrant activation leads to a surge in inflammatory events, enhanced IFN I responses, and cell death. The primary pathway triggering STING activation is the cyclic GMP-AMP synthase (cGAS) pathway. This review delves into recent findings on STING and the cGAS-STING pathways, focusing on their regulatory mechanisms and impact on cardiovascular diseases. It also discusses the latest advancements in identifying antagonists targeting cGAS and STING, and concludes by assessing the potential of cGAS or STING inhibitors as treatments for cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Proteínas de la Membrana , Nucleotidiltransferasas , Transducción de Señal , Humanos , Nucleotidiltransferasas/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/inmunología , Proteínas de la Membrana/metabolismo , Animales , Inmunidad Innata , Inflamación/inmunología , Inflamación/metabolismo
4.
Exp Ther Med ; 27(6): 269, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38756900

RESUMEN

Multiple myeloma (MM) is a plasma cell clonal disease and these plasma cells can survive in the gut. The intestinal microbiota is a complex ecosystem and its dysfunction can release persistent stimulus signals that trigger genetic mutations and clonal evolution in the gut. The present study analyzed the intestinal microbiota in fecal samples of MM patients in high-altitude and cold regions of China using 16s rRNA sequencing and analyzed significantly enriched species at the phylum and genus levels. Although no significant difference in the alpha diversity was observed between the MM and control groups, a significant difference was noted in the beta diversity. A total of 15 significant differential bacteria at the genus level were found between the two groups, among which Bacteroides, Streptococcus, Lactobacillus and Alistipes were significantly enriched in the MM group. The present study also constructed a disease diagnosis model using Random Forest analysis and verified its accuracy using receiver operating characteristic analysis. In addition, using correlation analysis, it demonstrated that the composition of the intestinal microbiota in patients with MM was associated with complement levels. Notably, the present study predicted that the signaling and metabolic pathways of the intestinal microbiota affected MM progression through Kyoto Encyclopedia of Genes and Genomes functional analysis. The present study provides a new approach for the prevention and treatment of MM, in which the intestinal microbiota may become a novel therapeutic target for MM.

5.
Exp Ther Med ; 27(6): 262, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38756908

RESUMEN

Ultraviolet (UV) is divided into UVA (long-wave, 320-400 nm), UVB (middle-wave, 280-320 nm) and UVC (short-wave, 100-280 nm) based on wavelength. UV radiation (UVR) from sunlight (UVA + UVB) is a major cause of skin photodamage including skin inflammation, aging and pigmentation. Accidental exposure to UVC burns the skin and induces skin cancer. In addition to the skin, UV radiation can also impair visual function. Non-coding RNAs (ncRNAs) are a class of functional RNAs that do not have coding activity but can control cellular processes at the post-transcriptional level, including microRNA (miRNA), long non-coding RNA (lncRNA) and circulatory RNA (circRNA). Through a review of the literature, it was determined that UVR can affect the expression of various ncRNAs, and that this regulation may be wavelength specific. Functionally, ncRNAs participate in the regulation of photodamage through various pathways and play pathogenic or protective regulatory roles. In addition, ncRNAs that are upregulated or downregulated by UVR can serve as biomarkers for UV-induced diseases, aiding in diagnosis and prognosis assessment. Therapeutic strategies targeting ncRNAs, including the use of natural drugs and their extracts, have shown protective effects against UV-induced photodamage. In the present review, an extensive summarization of previous studies was performed and the role and mechanism of ncRNAs in UV-induced radiation effects was reviewed to aid in the diagnosis and treatment of UV-related diseases.

6.
Environ Pollut ; 349: 123932, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583796

RESUMEN

By analyzing environmental and meteorological monitoring data over recent years of 2015-2022, the Twain-Hu Basin (THB) in central China was identified as a regional O3 pollution center over China with the highest increasing trend at 1.10 %⸱yr-1 in interannual variations of O3 concentrations with deteriorating O3 pollution over recent years. We explored the spatiotemporal variations in O3 pollution in the THB with ozone suppression (OS) under high air temperature over metropolitan, small urban, and mountainous areas. The bipolarized interannual trends in interannual O3 variations in urban and mountainous areas over central China were characterized with the increasing and decreasing 90th percentiles of the daily maximum 8-h (MDA8-90) O3 concentrations respectively in polluted urban areas and clean mountainous areas over recent eight years. The changes of the near-surface O3 concentrations with air temperature exhibited the inflection points of OS from increasing to decreasing O3 at air temperature of 30.5 °C in mountainous areas, 32.5 °C in small urban areas, and 34.5 °C in metropolitan areas, and the intensity of OS was estimated in the ranking with mountainous areas (-2.30 µg⸱m-3⸱°C-1) > small urban areas (-1.96 µg⸱m-3⸱°C-1) > metropolitan areas (-1.54 µg⸱m-3⸱°C-1), indicating that the OS was more significant over the lower-O3 mountainous areas. This study has implications for understanding O3 pollution variations with the meteorological drivers.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Ozono , Ozono/análisis , China , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Calor , Temperatura , Ciudades
7.
PeerJ Comput Sci ; 10: e1858, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435553

RESUMEN

Managing user bias in large-scale user review data is a significant challenge in optimizing children's book recommendation systems. To tackle this issue, this study introduces a novel hybrid model that combines graph convolutional networks (GCN) based on bipartite graphs and neural matrix factorization (NMF). This model aims to enhance the precision and efficiency of children's book recommendations by accurately capturing user biases. In this model, the complex interactions between users and books are modeled as a bipartite graph, with the users' book ratings serving as the weights of the edges. Through GCN and NMF, we can delve into the structure of the graph and the behavioral patterns of users, more accurately identify and address user biases, and predict their future behaviors. Compared to traditional recommendation systems, our hybrid model excels in handling large-scale user review data. Experimental results confirm that our model has significantly improved in terms of recommendation accuracy and scalability, positively contributing to the advancement of children's book recommendation systems.

8.
Inorg Chem ; 63(12): 5586-5597, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38481363

RESUMEN

The development of stable and effective catalysts to convert toxic H2S into high value-added sulfur is essential for production safety and environmental protection. However, the inherent defects of traditional iron- and zirconium-based catalysts, such as poor activity, high oxygen consumption, and low sulfur selectivity, limit their further developments and applications. Herein, the Fe-Zr bimetallic organic framework FeUIO-66(x) with different cubic morphologies was synthesized via a facile solvothermal method. The results indicate that the introduction of Fe not only increases the specific surface area and weak L-sites of the catalyst without changing its crystal structure, which provides enough reaction space and more active sites for the adsorption and activation of H2S, but also reduces the activation energy of the reaction, significantly promoting the selective oxidation of H2S. As a result, the as-obtained FeUIO-66(1) catalyst exhibits the highest desulfurization activity and superior durability and water resistance stability, and its H2S conversion and sulfur selectivity within 50 h are 100 and 88%, respectively. More importantly, the structure of the catalyst after the desulfurization reaction is consistent with that of the fresh counterpart. The study offers new insights into the development of effective and stable bimetallic catalysts to eliminate H2S and recycle sulfur.

9.
Molecules ; 29(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38542966

RESUMEN

Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is a pivotal immune checkpoint receptor, playing a crucial role in modulating T-cell activation. In this study, we delved into the underlying mechanism by which a common mutation, G199R, in the cytoplasmic domain of CTLA-4 impacts its inhibitory function. Utilizing nuclear magnetic resonance (NMR) spectroscopy and biochemical techniques, we mapped the conformational changes induced by this mutation and investigated its role in CTLA-4 activity. Our findings reveal that this mutation leads to a distinct conformational alteration, enhancing protein-membrane interactions. Moreover, functional assays demonstrated an improved capacity of the G199R mutant to downregulate T-cell activation, underscoring its potential role in immune-related disorders. These results not only enhance our understanding of CTLA-4 regulatory mechanisms but also provide insights for targeted therapeutic strategies addressing immune dysregulation linked to CTLA-4 mutations.


Asunto(s)
Comunicación Celular , Activación de Linfocitos , Antígeno CTLA-4/genética , Mutación , Activación de Linfocitos/genética
10.
Sci Total Environ ; 918: 170622, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38325490

RESUMEN

In this study, the aerosol size distributions, cloud condensation nuclei (CCN) number concentration (NCCN), single-particle chemical composition and meteorological data were collected from May 12 to June 8, 2017, at the summit of Mt. Tai. The effects of new particle formation (NPF) events and aerosol chemical components on CCN at Mt. Tai were analyzed in detail. The results showed that, NPF events significantly enhanced the CCN population, and the enhancement effect increased with increasing supersaturation (SS) value at Mt.Tai. NCCN at SS ranging from 0.1 to 0.9 % on NPF days was 10.9 %, 36.5 %, 44.6 %, 53.5 % and 51.5 % higher than that on non-NPF days from 10:00-13:00 as NPF events progressed. The effect of chemical components on CCN activation under the influence of NPF events was greater than that in the absence of NPF events. The correlation coefficients of EC-Nitrate particles (EC-Sulfate particles) and CCN at all SS levels on NPF days were 1.31-1.59 times (1.17-1.35 times) higher than those on non-NPF days. Nitrate particles promoted CCN activation but sulfate particles inhibited activation at Mt. Tai. There are differences or even opposite effects of the same group of particles on CCN activation under the influence of NPF events in different air masses. EC-Sulfate particles inhibited CCN activation at all SS levels for type I but weakly promoted activation at lower SS ranging from 0.1 to 0.3 % and weakly inhibited it at higher 0.9 % SS for type II. OCEC particles significantly inhibited CCN activation for type II, and this effect decreased with increasing SS. OCEC particles only weakly inhibited activation at SS ranging from 0.5 to 0.7 % for type I. OCEC particles only weakly inhibited this process at 0.1 % SS, while they very weakly promoted activation for SS > 0.1 %. This reveals that the CCN activity is not only related to the chemical composition of the particles, but the mixing state also has an important effect on the CCN activity.

11.
J Mol Biol ; 436(8): 168500, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38401626

RESUMEN

Programmed cell death 1 ligand 2 (PD-L2), a member of the B7 immune checkpoint protein family, emerges as a crucial player in immune modulation. Despite its functional overlap with programmed cell death 1 ligand 1 (PD-L1) in binding to the programmed cell death protein 1 (PD-1) on T cells, PD-L2 exhibits a divergent expression pattern and a higher affinity for PD-1. However, the regulatory mechanisms of PD-L2 remain under-explored. Here, our investigations illustrate the pivotal role of cholesterol in modulating PD-L2 stability. Using advanced nuclear magnetic resonance (NMR) and biochemical analyses, we demonstrate a direct and specific binding between cholesterol and PD-L2, mediated by an F-xxx-V-xx-LR motif in its transmembrane domain, distinct from that in PD-L1. This interaction stabilizes PD-L2 and prevents its downstream degradation. Disruption of this binding motif compromises PD-L2's cellular stability, underscoring its potential significance in cancer biology. These findings not only deepen our understanding of PD-L2 regulation in the context of tumors, but also open avenues for potential therapeutic interventions.


Asunto(s)
Colesterol , Proteína 2 Ligando de Muerte Celular Programada 1 , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Receptor de Muerte Celular Programada 1 , Dominios Proteicos , Linfocitos T/metabolismo , Células HEK293 , Humanos , Estabilidad Proteica , Proteína 2 Ligando de Muerte Celular Programada 1/química , Proteína 2 Ligando de Muerte Celular Programada 1/metabolismo , Colesterol/química , Colesterol/metabolismo
12.
Sci Total Environ ; 917: 170484, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38296078

RESUMEN

The number of O3 pollution days indicates an overall increasing trend over 2014-2021 in Wuxi in the Yangtze River Delta, with the pollution concentrations of MDA8-O3 between 186 and 200 µg·m-3. Specifically, a total of 62 POPEs (persistent O3 pollution events), defined as episodes with 3 or more continuous O3 pollution days, were observed for the 8 years. Using a multi-linear regression model, we find that the meteorology can explain approximately 56.5 % of the O3 variations for the 8 years in Wuxi, with temperature being the most crucial meteorological factor, followed by relative humidity (RH) and wind speeds. High temperature, low RH, low wind speeds and downward airflows significantly correlate with POPE-O3 changes. Three types of synoptic circulations are further identified during the POPEs from 2014 to 2021 by the T-mode (T-PCA) classification method. The primary circulation patterns governing the interannual changes of POPEs are characterized by the largest positive anomalies of temperature and planetary boundary layer (PBL) height; moreover, a distinct vertical mixing process is observed with uplifting airflows in the convective PBL during the afternoon and sinking airflows in the stable PBL at night, which is incredibly conducive to the downward transport of O3 after its upward delivery during daytime and substantially contributes to midnight O3 at the surface. The other two circulation types are associated with uniform descending flows in the PBL; as a result, surface O3 accumulates only near the ground and decreases significantly at night due to the titration effect. This study systematically highlights the influence of critical meteorological factors regulated by different synoptic circulations on the POPE in Wuxi, which provides a scientific basis for pollution control and prediction.

13.
Small ; : e2309805, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287735

RESUMEN

Loading cocatalysts onto semiconductors is one of the most popular strategies to inhibit charge recombination, but the efficiency is generally hindered by the localized built-in electric field and the weakly connected interface. Here, this work designs and synthesizes a 1D P-doped CdS nanowire/Ni2 P heterojunction with gradient doped P to address the challenges. In the composite, the gradient P doping not only creates a funneled bandgap structure with a built-in electric field oriented from the bulk of P-CdS to the surface, but also facilitates the formation of a tightly connected interface using the co-shared P element. Consequently, the photogenerated charge carriers are enabled to be pumped from inside to surface of the P-CdS and then smoothly across the interface to the Ni2 P. The as-obtained P-CdS/Ni2 P displays high visible-light-driven H2 evolution rate of ≈8265 µmol g-1 h-1 , which is 336 times and 120 times as that of CdS and P-CdS, respectively. This work is anticipated to inspire more research attention for designing new gradient-doped semiconductor/cocatalyst heterojunction photocatalysts with bridged interface for efficient solar energy conversion.

14.
J Colloid Interface Sci ; 657: 819-829, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38086245

RESUMEN

The microstructure of Au metal cocatalyst has been shown to significantly influence its optical and electronic properties. However, the impact of Au defect engineering on photocatalytic activity remains underexplored. In this study, we synthesize different Au-TiO2 composites by in-situ hybridizing face-centered cubic (F-Au) and twin boundary defect Au (T-Au) nanoparticles (NPs) onto the surface of TiO2. We find that T-Au NPs with twin defects serve as highly efficient cocatalysts for converting alcohols into their corresponding aldehydes while also generating H2. The optimized T-Au/TiO2 composite yields an H2 evolution rate of 6850 µmol h-1 g-1 and a BAD formation rate of 6830 µmol h-1 g-1, about 38 times higher than that of blank TiO2. Compared to F-Au/TiO2, the T-Au/TiO2 composite enhances charge separation, extends the lifetime of electrons, and provides more active sites for H2 reduction. The twin defect also improves alcohol reactant adsorption, boosting overall photocatalytic performance. This research paves the way for more studies on defect engineering in metal cocatalysts for enhanced catalytic activities in organic synthesis and H2 evolution.

15.
MedComm (2020) ; 4(6): e448, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38077250

RESUMEN

Staphylococcus aureus (SA) is a major cause of sepsis, leading to acute lung injury (ALI) characterized by inflammation and oxidative stress. However, the role of the Nrf2/PHB2 pathway in SA-induced ALI (SA-ALI) remains unclear. In this study, serum samples were collected from SA-sepsis patients, and a SA-ALI mouse model was established by grouping WT and Nrf2-/- mice after 6 h of intraperitoneal injection. A cell model simulating SA-ALI was developed using lipoteichoic acid (LTA) treatment. The results showed reduced serum Nrf2 levels in SA-sepsis patients, negatively correlated with the severity of ALI. In SA-ALI mice, downregulation of Nrf2 impaired mitochondrial function and exacerbated inflammation-induced ALI. Moreover, PHB2 translocation from mitochondria to the cytoplasm was observed in SA-ALI. The p-Nrf2/total-Nrf2 ratio increased in A549 cells with LTA concentration and treatment duration. Nrf2 overexpression in LTA-treated A549 cells elevated PHB2 content on the inner mitochondrial membrane, preserving genomic integrity, reducing oxidative stress, and inhibiting excessive mitochondrial division. Bioinformatic analysis and dual-luciferase reporter assay confirmed direct binding of Nrf2 to the PHB2 promoter, resulting in increased PHB2 expression. In conclusion, Nrf2 plays a role in alleviating SA-ALI by directly regulating PHB2 transcription and maintaining mitochondrial function in lung cells.

16.
Phys Chem Chem Phys ; 25(47): 32317-32322, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37991811

RESUMEN

We report the first use of carbon-doped boron nitride (BCN) for H2S-selective catalytic oxidation. The obtained carbon-doped BN with an ultrathin layer structure exhibits outstanding H2S elimination and high S yield. In particular, BN doped carbon nanosheets display better catalytic performance than traditional catalysts, such as iron- and carbon-based catalysts. The findings of the present work shed a new light on metal-free catalysts for efficient catalytic removal of toxic H2S.

17.
Int J Biol Macromol ; 253(Pt 5): 127159, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37778577

RESUMEN

SARS-CoV-2 is a particularly transmissible virus that renders the worldwide COVID-19 pandemic and global severe respiratory distress syndrome. Protein-based vaccines hold great advantages to build the herd immunity for their specificity, effectiveness, and safety. Receptor-binding domain (RBD) of SARS-CoV-2 is an appealing antigen for vaccine development. However, adjuvants and delivery system are necessitated to enhance the immunogenicity of RBD. In the present study, RBD was chemically conjugated with loxoribine and SpyCatcher/SpyTag, followed by assembly to form a nanoparticle vaccine. Loxoribine (a TLR7/8 agonist) acted as an adjuvant, and nanoparticles functioned as delivery system for the antigen and the adjuvant. The nanoparticle vaccine elicited high RBD-specific antibody titers, high neutralizing antibody titer, and strong ACE2-blocking activity. It stimulated high splenic levels of Th1-type cytokines (IFN-γ and IL-2) and Th2-type cytokines (IL-4 and IL-5) in BALB/c mice. It promoted the splenocyte proliferation, enhanced the CD4+ and CD8+ T cell percentage and stimulated the maturation of dendritic cells. The vaccine did not render apparent toxicity to the organs of mice. Thus, the nanoparticle vaccine was of potential to act as a preliminarily safe and effective candidate against SARS-CoV-2.


Asunto(s)
COVID-19 , Nanopartículas , Animales , Humanos , Ratones , Vacunas contra la COVID-19 , SARS-CoV-2 , COVID-19/prevención & control , Pandemias , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , Citocinas , Ratones Endogámicos BALB C , Anticuerpos Neutralizantes , Anticuerpos Antivirales
18.
Huan Jing Ke Xue ; 44(9): 4843-4852, 2023 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-37699803

RESUMEN

To investigate the pollution characteristics of carbonaceous components in PM10 and PM2.5 of road dust fall and soil dust in Xi'an and enrich their source profiles, samples from five sites of road dust fall and 16 sites of soil dust were collected in Xi'an from April to May 2015. The ZDA-CY01 particulate matter resuspension sampler was used to obtain PM10 and PM2.5 samples, and the Model5L-NDIR OC and EC analyzer were used to determine the concentrations of organic carbon (OC) and elemental carbon (EC) in PM10 and PM2.5. The pollution and sources of carbonaceous aerosol in PM10 and PM2.5 were investigated by analyzing OC and EC characteristics, ratio, and the principal component analysis statistical model. The results showed that the proportions of OC in PM10 and PM2.5 at the various dust fall sites differed, ranging from 6.0% to 19.4% and 7.6% to 29.8%, respectively. The ratios of EC in PM10 and PM2.5at the different dust fall sites were relatively small, accounting for 0.6%-2.2% and 0.2%-3.6% in urban sites, respectively; however, EC was almost undetectable in most peripheral soil dust. The proportions of carbonaceous components in PM10 and PM2.5 followed the order of urban road dust fall>external control dust>river beach soil dust>soil dust and urban road dust fall>soil dust>external control dust>river beach soil dust, respectively. OC dominated the carbonaceous aerosols at the different sites, which was relatively low in urban road dust fall. The OC to total carbon (TC) ratios in PM10 and PM2.5 at urban road dust fall were 85.2%-95.3% and 87.9%-98.9%, respectively. The OC to TC ratios in PM10 and PM2.5 of soil dust were relatively high, exceeding 99%. Carbonaceous components were primarily concentrated in fine particles. The pollution distribution of carbonaceous components in the urban road dust fall sites was consistent, whereas that in the different soil dust sites were quite different. The carbonaceous components in urban road dust fall and soil dust were primarily affected by pollutant source emissions such as biomass burning, coal burning, gasoline, and diesel vehicle exhaust. There were differences in the source contribution rates of carbonaceous aerosols in PM10 and PM2.5.

19.
Acta Pharm Sin B ; 13(9): 3694-3707, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37719386

RESUMEN

Abnormally activated CDK9 participates in the super-enhancer mediated transcription of short-lived proteins required for cancer cell survival. Targeting CDK9 has shown potent anti-tumor activity in clinical trials among different cancers. However, the study and knowledge on drug resistance to CDK9 inhibitors are very limited. In this study, we established an AML cell line with acquired resistance to a highly selective CDK9 inhibitor BAY1251152. Through genomic sequencing, we identified in the kinase domain of CDK9 a mutation L156F, which is also a coding SNP in the CDK9 gene. By knocking in L156F into cancer cells using CRISPR/Cas9, we found that single CDK9 L156F could drive the resistance to CDK9 inhibitors, not only ATP competitive inhibitor but also PROTAC degrader. Mechanistically, CDK9 L156F disrupts the binding with inhibitors due to steric hindrance, further, the mutation affects the thermal stability and catalytic activity of CDK9 protein. To overcome the drug resistance mediated by the CDK9-L156F mutation, we discovered a compound, IHMT-CDK9-36 which showed potent inhibition activity both for CDK9 WT and L156F mutant. Together, we report a novel resistance mechanism for CDK9 inhibitors and provide a novel chemical scaffold for the future development of CDK9 inhibitors.

20.
Nanoscale ; 15(35): 14584-14594, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37610823

RESUMEN

Photocatalytic oxidation of toluene to valuable fine chemicals is of great significance, yet faces challenges in the development of advanced catalysts with both high activity and selectivity for the activation of inert C(sp3)-H bonds. Halide perovskites with remarkable optoelectronic properties have shown to be prospective photoactive materials, but the bulky structure with a small surface area and severe recombination of photogenerated electron-hole pairs are obstacles to application. Here, we fabricate a hierarchical nanoflower-shaped CsPbBr3/TiO2 heterojunction by assembling CsPbBr3 nanoparticles on 2D TiO2 nanoflake subunits. The design significantly downsizes the size of CsPbBr3 from micrometers to nanometers, and forms a type II heterojunction with intimate interfacial contact between CsPbBr3 and TiO2 nanoflakes, thereby accelerating the separation and transfer of photogenerated charges. Moreover, the formed hierarchical heterojunction increaseslight absorption by refraction and scattering, offers a large surface area and enhances the adsorption of toluene molecules. Consequently, the optimized CsPbBr3/TiO2 exhibits a high performance (10 200 µmol g-1 h-1) for photocatalytic toluene oxidation with high selectivity (85%) for benzaldehyde generation under visible light. The photoactivity is about 20 times higher than that of blank CsPbBr3, and is among the best photocatalytic performances reported for selective oxidation of toluene under visible light irradiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...