Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Braz J Med Biol Res ; 50(3): e6079, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28225893

RESUMEN

Several long non-coding RNA (lncRNA) might be correlated with the prognosis of colorectal cancer (CRC) and serve as a diagnostic and prognostic biomarker. However, the exact expression pattern of small nucleolar RNA host gene 12 (SNHG12) in colorectal cancer and its clinical significance remains unclear. The level of SNHG12 was detected by qRT-PCR in CRC tissues and CRC cells. MTT assay and colony formation assay were performed to examine the cell proliferation of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. Flow cytometry technology was used to detect cell cycle and cell apoptosis of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. The protein level of cell cycle progression-related molecules, including cyclin-dependent kinases (CDK4, CDK6), cyclin D1 (CCND1) and cell apoptosis-related molecule caspase 3 was detected by western blot. The effect of SNHG12 knockdown was examined in vivo. Increased levels of SNHG12 were observed in CRC tissues and in CRC cells. SNHG12 promoted the cell proliferation of CRC cells. In addition, SNHG12 overexpression boosted the cell cycle progression of SW480 cells transfected with pcDNA-SNHG12 and SNHG12 knockdown inhibited the cell cycle progression of HT29 cells transfected with si-SNHG12. SNHG12 also inhibited the cell apoptosis of CRC cells. We also found that SNHG12 increased the expression of cell cycle-related proteins and suppressed the expression of caspase 3. Our results suggest that SNHG12 promoted cell growth and inhibited cell apoptosis in CRC cells, indicating that SNHG12 might be a useful biomarker for colorectal cancer.


Asunto(s)
Apoptosis , Proliferación Celular/fisiología , Neoplasias Colorrectales/metabolismo , ARN Largo no Codificante/fisiología , Western Blotting , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Regulación hacia Arriba
2.
Genet Mol Res ; 12(4): 5945-57, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24338388

RESUMEN

This study investigated the alteration of gene expression profiles in order to gain a deeper understanding into the molecular mechanism involved in different processes of vascular calcification (VC). Sprague Dawley (SD) rats were injected with 300,000 µg/kg vitamin D3 and gavaged with 25 mg/kg nicotine for 8 or 16 weeks to create 8- and 16-week VC calcification groups. Histological analysis and quantification of aortic calcium content were used to determine the severity of vascular calcification. The suppression subtractive hybridization (SSH) method was employed to screen for up and downregulated genes in early and later phases of vascular calcification. Changes in calcium and phosphorus levels in tissue were used as markers of vascular calcification. Quantification of aortic calcium content revealed that vascular calcification might regress over time. In the early phase of vascular calcification, many calcification-promoting genes were upregulated, including ossification, oxidation, and inflammatory genes. In contrast, in later phase of vascular calcification, various calcification-inhibitor genes were highly expressed, including pyrophosphoric acid synthesis genes, glutamate signal peptide-related, reduction activity, and apoptosis regulation genes. The relatively higher expression of calcification-inhibitor genes compared to that of calcification-promoting genes might explain the genetic mechanism leading to the regression of vascular calcification. Therefore, this study provides a genomic basis to facilitate understanding of the molecular mechanism underlying vascular calcification regression.


Asunto(s)
Transcriptoma , Calcificación Vascular/metabolismo , Fosfatasa Alcalina , Animales , Aorta/metabolismo , Aorta/patología , Calcio/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Masculino , Redes y Vías Metabólicas , Fósforo/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Calcificación Vascular/genética , Calcificación Vascular/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA