Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
J Med Phys ; 48(3): 298-306, 2023.
Article En | MEDLINE | ID: mdl-37969148

Monte Carlo (MC) techniques have been recognized as the gold standard for the simulation of radiation transport in radiotherapy. The aim of the study is to perform dosimetric evaluation of Simultaneous Integrated Boost (SIB) radiation treatment planning using MC simulation approach. The geometrical source modeling and simulation of 6 MV Flattening Filter Free (FFF)beam from TrueBeam linear accelerator have been carried out to simulate Volumetric Modulated Arc Therapy (VMAT) plans using MC simulation software PRIMO. All the SIB plans have been generated using VMAT techniques for patients with locally advanced postoperative head-and-neck squamous cell carcinoma in Eclipse Treatment Planning System (TPS) retrospectively. TPS plans have been compared against their respective MC-simulated plans in PRIMO. The quality assessments of plans have been performed using several dose volume parameters, plan quality indices, and methods of gamma analysis. Dmean, D50%, and D2% received by planning target volume (PTV), PTV60, and PTV52 have been found significantly lower in TPS-generated plans compared to MC-simulated plans. D100%, D98%, and D95% received by PTV60 exhibit good agreement. However, PTV52 shows a significant deviation between TPS and MC plans. The mean organ-at-risk doses have been found significantly lower in TPS plans compared to MC plans. TPS and MC plans have been found in close agreement within gamma acceptance criteria of 3% Dose Difference (DD) and 3 mm Distance to Agreement (DTA). Dose distributions computed using MC simulation techniques are reliable, accurate, and consistent with analytical anisotropic algorithm. Plan quality indices have been found slightly compromised in MC-simulated plans compared with TPS-generated plans appeared to be a true representation of real dose distribution obtained from MC simulation technique. Validation using MC simulation approach provides an independent secondary check for ensuring accuracy of TPS-generated plan.

2.
J Cancer Res Ther ; 17(2): 455-462, 2021.
Article En | MEDLINE | ID: mdl-34121692

PURPOSE: To classify the available plan evaluation indices and compare the dosimetric suitability of these indices. MATERIALS AND METHODS: Available published plan evaluation indices were categorized. Conformity index (CI) into two groups, one group contains those CI formulas which do not consider critical structure and other group contains those CI formulas which consider planning target volume (PTV) coverage, normal tissue and critical structure sparing simultaneously. Various homogeneity index (HI) formulas extracted from literature. Structure data sets of 25 patients were taken under consideration comprising of various sites. For each patient, two plans were created using Volumetric Arc Therapy technique. First type of plan (Plan-A) were generated considering all tissue objectives for targets and Organ at Risks (OARs) whereas second type of plan (Plan-B) were generated considering only targets tissue objectives and excluding OARs tissue objectives during plan optimization and dose calculation. Planning evaluation parameters were compared between Plan-A and Plan-B. RESULTS: CI calculated by various formulas in two different scenarios presented <2% variation. Any commonly used CI formula failed to differentiate the two different planning situations. On comparison between HI of two different scenario, it is observed that there are four formulas of HI which showed negligible variation but two formulae: S-index and HI (D) showed marginal variation. It is also observed that when OARs are removed from optimization dose homogeneity improved which is specifically pointed by sigma index formula. CONCLUSION: CI, which has assimilated the presence of OAR in their formulation, shows more reliability in plan evaluation. Sigma index was found to be more efficient formula while evaluating homogeneity of a treatment plan.


Neoplasms/radiotherapy , Radiation Oncology/methods , Radiometry/standards , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Datasets as Topic , Humans , Organs at Risk/diagnostic imaging , Organs at Risk/radiation effects , Radiation Oncology/standards , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/standards , Radiotherapy, Intensity-Modulated/standards , Reproducibility of Results
3.
Rep Pract Oncol Radiother ; 25(3): 336-344, 2020.
Article En | MEDLINE | ID: mdl-32210739

AIM: A systemic review and analysis of evolution journey of indices, such as conformity index (CI), homogeneity index (HI) and gradient index (GI), described in the literature. BACKGROUND: Modern radiotherapy techniques like VMAT, SRS and SBRT produce highly conformal plans and provide better critical structure and normal tissue sparing. These treatment techniques can generate a number of competitive plans for the same patients with different dose distributions. Therefore, indices like CI, HI and GI serve as complementary tools in addition to visual slice by slice isodose verification while plan evaluation. Reliability and accuracy of these indices have been tested in the past and found shortcomings and benefits when compared to one another. MATERIAL AND METHODS: Potentially relevant studies published after 1993 were identified through a pubmed and web of science search using words "conformity index", "Homogeneity index", "Gradient index"," Stereotactic radiosurgery"," stereotactic Body radiotherapy" "complexity metrics" and "plan evaluation index". Combinations of words "plan evaluation index conformity index" were also searched as were bibliographies of downloaded papers. RESULTS AND CONCLUSIONS: Mathematical definitions of plan evaluation indices modified with time. CI definitions presented by various authors tested at their own and could not be generalized. Those mathematical definitions of CI which take into account OAR sparing grant more confidence in plan evaluation. Gradient index emerged as a significant plan evaluation index in addition to CI whereas homogeneity index losing its credibility. Biological index base plan evaluation is becoming popular and may replace or alter the role of dosimetrical indices.

4.
Rep Pract Oncol Radiother ; 24(5): 432-442, 2019.
Article En | MEDLINE | ID: mdl-31388337

BACKGROUND: Practice of Unflattened or Flattening filter free (FFF) beam has become the high dose standard in radiotherapy (RT), such as stereotactic radio-surgery (SRS) and stereotactic radiotherapy (SRT). The removal of a flattening filter (FF) from the path of a photon beam alters the characteristics of FFF beam. Since the conventional route for dosimetric analysis of FF beam cannot be applied to FFF beam, the procedure of analyzing beam characteristics for FFF beam based on inflection points (IPs) is used. IP is a point where the concavity change observed corresponds to its change in sign (±) of the second derivative. AIM: The objective of the study is to determine IPs for dosimetric analysis of the FFF beam profile. METHODS AND MATERIALS: In this study, IPs are determined through the python code programming based on the mathematical first principle of the derivative. They are compared with IPs estimated by the conventional graphical manual method using Microsoft Excel (MS). IPs and their dependent dosimetric parameters determined by both mathematical and graphical manual methods are compared. RESULT: Percentage differences between the IPs determined by both methods, for 6MVFFF inline and crossline beam profile are found to be 2.7% and 0.8% respectively. Similarly, the average penumbra differences for 6MVFFF inline and crossline beam profile are found to be 0.15 mm and 0.9 mm, respectively. However, differences in the field width between both methods are found insignificant. CONCLUSION: Graphical manual method is very time-consuming, tedious and user dependent. However, the mathematical method through python code programming is more precise, faster and independent of individual users.

5.
Rep Pract Oncol Radiother ; 22(6): 485-494, 2017.
Article En | MEDLINE | ID: mdl-29070960

AIM: Objective of present study is to determine optimum value of DLG and its validation prior to being incorporated in TPS for Varian TrueBeam™ millennium 120 leaves MLC. BACKGROUND: Partial transmission through the rounded leaf ends of the Multi Leaf Collimator (MLC) causes a conflict between the edges of the light field and radiation field. Parameter account for this partial transmission is called Dosimetric Leaf Gap (DLG). The complex high precession technique, such as Intensity Modulated Radiation Therapy (IMRT), entails the modeling of optimum value of DLG inside Eclipse Treatment Planning System (TPS) for precise dose calculation. MATERIALS AND METHODS: Distinct synchronized uniformed extension of sweeping dynamic MLC leaf gap fields created by Varian MLC shaper software were use to determine DLG. DLG measurements performed with both 0.13 cc semi-flex ionization chamber and 2D-Array I-Matrix were used to validate the DLG; similarly, values of DLG from TPS were estimated from predicted dose. Similar mathematical approaches were employed to determine DLG from delivered and TPS predicted dose. DLG determined from delivered dose measured with both ionization chamber (DLGIon) and I-Matrix (DLGI-Matrix) compared with DLG estimate from TPS predicted dose (DLGTPS). Measurements were carried out for all available 6MV, 10MV, 15MV, 6MVFFF and 10MVFFF beam energies. RESULTS: Maximum and minimum DLG deviation between measured and TPS calculated DLG was found to be 0.2 mm and 0.1 mm, respectively. Both of the measured DLGs (DLGIon and DLGI-Matrix) were found to be in a very good agreement with estimated DLG from TPS (DLGTPS). CONCLUSIONS: Proposed method proved to be helpful in verifying and validating the DLG value prior to its clinical implementation in TPS.

...