Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 13: 851680, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35496303

RESUMEN

Background: Fuzheng Kang'ai decoction (FZKA) has been widely used to treat Non-Small Cell Lung Cancer (NSCLC) patients in China for decades, showing definitively curative effects in clinic. Recently, we found that FZKA could induce NSCLC cell ferroptosis, another type of programmed cell death (PCD), which is totally different from cell apoptosis. Therefore, in the present study, we aim to discover the exact mechanism by which FZKA induces NSCLC cell ferroptosis, which is rarely studied in Traditional Chinese Medicine (TCM). Methods: Cell proliferation assay were performed to detect the cell viability. Cell ferroptosis triggered by FZKA was observed by performing lipid peroxidation assay, Fe2+ Ions assay, and mitochondrial ultrastructure by transmission electron microscopy. Ferroptosis inhibitors including liproxstatin-1 and UAMC 3203 were used to block ferroptosis. The ratio of GSH/GSSG was done to measure the alteration of oxidative stress. Western blot and qRT-PCR were carried out to detect the expression of solute carrier family 7 member 11 (SLC7A11), solute carrier family 3 member 2 (SLC3A2) and glutathione peroxidase 4 (GPX4) at protein and mRNA levels, respectively. Lentivirus transfection was performed to overexpress GPX4 stably. Animal model was done to verify the effect of FZKA-induced ferroptosis in NSCLC in vivo and immunohistochemistry was done to detect the expression of SLC7A11, SLC3A2 and GPX4 at protein level. Results: First of all, in vitro experiments confirmed the inhibition effect of FZKA on NSCLC cell growth. We then, for the first time, found that FZKA induced NSCLC cell ferroptosis by increasing lipid peroxidation and cellular Fe2+ Ions. Moreover, characteristic morphological changes of NSCLC cell ferroptosis was observed under transmission electron microscopy. Mechanistically, GPX4, as a key inhibitor of lipid peroxidation, was greatly suppressed by FZKA treatment both at protein and mRNA levels. Furthermore, system xc- (SLC7A11 and SLC3A2) were found to be suppressed and a decreased GSH/GSSG ratio was observed at the same time when treated with FZKA. Notably, overexpressing GPX4 reversed the effect of FZKA-induced NSCLC cell ferroptosis significantly. Finally, the above effect was validated using animal model in vivo. Conclusion: Our findings conclude that GPX4 plays a crucial role in FZKA-induced NSCLC cell ferroptosis, providing a novel molecular mechanism by which FZKA treats NSCLC.

2.
Mol Carcinog ; 61(4): 417-432, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35040191

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common primary malignancies. Drug resistance has significantly prevented the clinical application of sorafenib (SF), a first-line targeted medicine for the treatment of HCC. Solamargine (SM), a natural alkaloid, has shown potential antitumor activity, but studies about antitumor effect of SM are obviously insufficient in HCC. In the present study, we found that SM significantly inhibited the growth of HCC and enhanced the anticancer effect of SF. In brief, SM significantly inhibited the growth of HepG2 and Huh-7 cells. The combination of SM and SF showed a synergistic antitumor effect. Mechanistically, SM downregulated the expression of long noncoding RNA HOTTIP and TUG1, followed by increasing the expression of miR-4726-5p. Moreover, miR-4726-5p directly bound to the 3'-UTR region of MUC1 and decreased the expression of MUC1 protein. Overexpression of MUC1 partially reversed the inhibitory effect of SM on HepG2 and Huh-7 cells viability, which suggested that MUC1 may be the key target in SM-induced growth inhibition of HCC. More importantly, the combination of SM and SF synergistically restrained the expression of MUC1 protein. Taken together, our study revealed that SM inhibited the growth of HCC and enhanced the anticancer effect of SF through HOTTIP-TUG1/miR-4726-5p/MUC1 signaling pathway. These findings will provide potential therapeutic targets and strategies for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Mucina-1/genética , Mucina-1/metabolismo , Mucina-1/uso terapéutico , ARN Largo no Codificante/genética , Alcaloides Solanáceos , Sorafenib/farmacología
3.
Front Pharmacol ; 12: 753068, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34955827

RESUMEN

Background: Radiation-induced skin injury is a major side-effect observed in cancer patients who received radiotherapy. Thus identifying new radioprotective drugs for prevention or treatment of post-irradiation skin injury should be prompted. A large number of clinical studies have confirmed that Compound Kushen injection (CKI) can enhance efficacy and reduce toxicity of radiotherapy. The aim of this study is to confirm the effect of CKI in alleviating radiotherapy injury in the skin and explore the exact mechanism. Methods: 60 patients who met the inclusion/exclusion criteria were allocated to treatment group (CKI before radiotherapy) or control group (normal saline before radiotherapy) randomly. MTT assay, flow cytometry, Western Blot, and transient transfection were performed to detect the cell viability, cell apoptosis and Bim expression after treatment with CKI or/and radiotherapy. Results: CKI had the effect of alleviating skin injury in cancer patients who received radiotherapy in clinic. CKI induced cancer cell apoptosis when combined with irradiation (IR), while it reversed the induction of cell apoptosis by IR in human skin fibroblast (HSF) cells. And Bim, as a tumor suppressor, was induced in cancer cells but had no change in HSF cells when treated with CKI. Moreover, the above effect could be attenuated when Bim was silenced by siRNA. Conclusion: We conclude that CKI represents a promising radio-protective agent with a potential differential beneficial effect on both cancer cells (inducing apoptosis) and HSF cells (providing radio-protection via inhibiting IR-induced apoptosis), via regulating Bim. Our study uncovers a novel mechanism by which CKI inhibits human cancer cell while protects skin from radiotherapy, indicating CKI might be a promising radio-protective drug. Clinical Trial Registration: Chinese Clinical Trial Registry (www.chictr.org.cn), identifier ChiCTR2100049164.

4.
Front Oncol ; 10: 553714, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33123467

RESUMEN

MicroRNA-24 (miR-24) has been widely studied in a variety of human cancers, which plays different roles in specific type of cancers. In the present review, we summarized the recent surveys regarding the role of miR-24 in different human cancers. On the one hand, miR-24 was reported to be down-regulated in some types of cancer, indicating its role as a tumor suppressor. On the other hand, it has shown that miR-24 was up-regulated in some other types of cancer, even in the same type of cancer, suggesting the role of miR-24 being as an oncogene. Firstly, miR-24 was dysregualted in human cancers, which is related to the clinical performance of cancer patients. Thus miR-24 could be used as a potential non-invasive diagnostic marker in human cancers. Secondly, miR-24 was associated with the tumor initiation and progression, being as a promoter or inhibitor. Therefore, miR-24 might be an effective prognostic biomarker in different type of cancers. Lastly, the abnormal expression of miR-24 was involved in the chemo- and radio- therapies of cancer patients, indicating the role of miR-24 being as a predictive biomarker to cancer treatment. Totally, miR-24 contributes to tumorigenesis, tumor progression, and tumor therapy, which closely related to clinic. The present review shows that miR-24 plays a double role in human cancers and provides plenty of evidences to apply miR-24 as a potential novel therapeutic target in treating human cancers.

5.
Mol Immunol ; 101: 210-220, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30007231

RESUMEN

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by cellular infiltration into the joints and cartilage destruction. Neutrophils play a crucial role in the pathogenesis of RA. Triptolide (TP) is a bioactive compound derived from Tripterygium wilfordii Hook F, which has been used in folk medicine as a treatment for a variety of inflammatory disorders, including RA, for many centuries. Previous studies have shown that TP possesses anti-arthritic activity. However, the anti-arthritic mechanism of TP remains to be fully defined. In the present study, we used the adjuvant-induced arthritis (AA) murine model of RA to investigate the impact of TP on RA and neutrophil function. TP alleviated AA by reducing neutrophil recruitment and suppressing the expression of interleukin-6 and tumour necrosis factor-α in vivo. TP also suppressed the expression of pro-inflammatory cytokines in neutrophils, promoted neutrophil apoptosis and inhibited the migration, NETosis and autophagy of neutrophils in vitro. Based on our findings, TP effectively ameliorates RA by down-regulating neutrophil inflammatory functions, indicating that TP represents a potential therapeutic agent for RA.


Asunto(s)
Artritis Reumatoide/patología , Diterpenos/farmacología , Inflamación/patología , Neutrófilos/patología , Fenantrenos/farmacología , Animales , Apoptosis/efectos de los fármacos , Artritis Experimental/patología , Autofagia/efectos de los fármacos , Enfermedad Crónica , Citocinas/biosíntesis , Diterpenos/uso terapéutico , Compuestos Epoxi/farmacología , Compuestos Epoxi/uso terapéutico , Trampas Extracelulares/efectos de los fármacos , Inflamación/tratamiento farmacológico , Elastasa de Leucocito/metabolismo , Lipopolisacáridos , Masculino , Ratones Endogámicos C57BL , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Peroxidasa/metabolismo , Fenantrenos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA