Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Exp Ther Med ; 20(4): 3615-3624, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32855713

RESUMEN

Long non-coding RNAs (lncRNAs) serve a crucial role in every aspect of cell biological functions as well as in a variety of diseases, including cardiovascular disease, cancer and nervous system disease. However, the differential expression profiles of lncRNAs in Marfan syndrome (MFS) have not been reported. The aim of the present study was to identify potential target genes behind the pathogenesis of MFS by analyzing microarray profiles of lncRNA in aortic tissues from individuals with MFS and normal aortas (NA). The differentially expressed lncRNA profiles between MFS (n=3) and NA (n=4) tissues were analyzed using microarrays. Bioinformatics analyses were used to further investigate the candidate lncRNAs. Reverse transcription-quantitative (RT-qPCR) was applied to validate the results. In total, the present study identified 294 lncRNAs (245 upregulated and 49 downregulated) and 644 mRNAs (455 upregulated and 189 downregulated) which were differential expressed between MFS and NA tissues (fold change ≥1.5; P<0.05). Gene Ontology enrichment analysis indicated that the differentially expressed mRNAs were involved in cell adhesion, elastic fiber assembly, extracellular matrix (ECM) organization, the response to virus and the inflammatory response. Kyoto Encyclopedia of Gene and Genomes pathway analysis indicated that the differentially expressed mRNAs were mainly associated with focal adhesion, the ECM-receptor interaction, the mitogen-activated protein kinase signaling pathway and the tumor necrosis factor signaling pathway. The lncRNA-mRNA coexpression network analysis further elucidated the interaction between the lncRNAs and mRNAs. A total of five lncRNAs (uc003jka.1, uc003jox.1, X-inactive specific transcript, linc-lysophosphatidic acid receptor 1 and linc-peptidylprolyl isomerase domain and WD repeat containing 1) with the highest degree of coexpression were selected and confirmed using RT-qPCR. In the present study, expression profiles of lncRNA and mRNA in MFS were revealed using microarray analysis. These results provided novel candidates for further investigation of the molecular mechanisms and effective targeted therapies for MFS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA