Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 146
1.
Nat Commun ; 15(1): 4721, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38830884

Optoelectronic neural interfaces can leverage the photovoltaic effect to convert light into electrical current, inducing charge redistribution and enabling nerve stimulation. This method offers a non-genetic and remote approach for neuromodulation. Developing biodegradable and efficient optoelectronic neural interfaces is important for achieving transdermal stimulation while minimizing infection risks associated with device retrieval, thereby maximizing therapeutic outcomes. We propose a biodegradable, flexible, and miniaturized silicon-based neural interface capable of transdermal optoelectronic stimulation for neural modulation and nerve regeneration. Enhancing the device interface with thin-film molybdenum significantly improves the efficacy of neural stimulation. Our study demonstrates successful activation of the sciatic nerve in rodents and the facial nerve in rabbits. Moreover, transdermal optoelectronic stimulation accelerates the functional recovery of injured facial nerves.


Nerve Regeneration , Sciatic Nerve , Animals , Rabbits , Nerve Regeneration/physiology , Nerve Regeneration/drug effects , Sciatic Nerve/physiology , Facial Nerve/physiology , Peripheral Nerves/physiology , Male , Rats , Silicon/chemistry , Rats, Sprague-Dawley , Electric Stimulation
2.
J Inflamm Res ; 17: 2927-2938, 2024.
Article En | MEDLINE | ID: mdl-38764496

Purpose: This study aimed to explore the therapeutic effect and potential mechanism of heparin-binding protein (HBP) reduction on sepsis-related acute lung injury. Methods: We utilized a murine model of sepsis-induced by intraperitoneal injection of lipopolysaccharides (LPS) in C57BL/6J mice divided into four groups: Control, LPS, Anti-HBP, and ceftriaxone (CEF). Following sepsis induction, Anti-HBP or CEF treatments were administered, and survival rates were monitored for 48 h. We then used reverse-transcription quantitative PCR to analyze the expression levels of HBP in lung tissues, immunohistochemistry for protein localization, and Western blotting for protein quantification. Pulmonary inflammation was assessed using enzyme-linked immunosorbent assays of proinflammatory cytokines (tumor necrosis factor-α, interleukin [IL]-1ß, IL-6, and interferon-γ). The activation state of the aryl hydrocarbon receptor (AhR) signaling pathway was determined via Western blotting, evaluating both cytoplasmic and nuclear localization of AhR and the expression of cytochrome P450 1A1 protein by its target gene. Results: Anti-HBP specifically reduced HBP levels. The survival rate of mice in the Anti-HBP and CEF groups was much higher than that in the LPS group. The severity of lung injury and pulmonary inflammatory response in the Anti-HBP and CEF groups was significantly lower than that in the LPS group. AhR signaling pathway activation was observed in the Anti-HBP and CEF groups. Additionally, there was no significant difference in the above indices between the Anti-HBP and CEF groups. Conclusion: HBP downregulation in lung tissues significantly improved LPS-induced lung injury and the pulmonary inflammatory response, thereby prolonging the survival of sepsis mice, suggesting activation of the AhR signaling pathway. Moreover, the effect of lowering the HBP level was equivalent to that of the classical antibiotic CEF. Trial Registration: Not applicable.

3.
Adv Healthc Mater ; : e2303289, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38640468

Existing methods for studying neural circuits and treating neurological disorders are typically based on physical and chemical cues to manipulate and record neural activities. These approaches often involve predefined, rigid, and unchangeable signal patterns, which cannot be adjusted in real time according to the patient's condition or neural activities. With the continuous development of neural interfaces, conducting in vivo research on adaptive and modifiable treatments for neurological diseases and neural circuits is now possible. In this review, current and potential integration of various modalities to achieve precise, closed-loop modulation, and sensing in neural systems are summarized. Advanced materials, devices, or systems that generate or detect electrical, magnetic, optical, acoustic, or chemical signals are highlighted and utilized to interact with neural cells, tissues, and networks for closed-loop interrogation. Further, the significance of developing closed-loop techniques for diagnostics and treatment of neurological disorders such as epilepsy, depression, rehabilitation of spinal cord injury patients, and exploration of brain neural circuit functionality is elaborated.

5.
Adv Healthc Mater ; : e2303316, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38323711

Electrical neuromodulation plays a pivotal role in enhancing patient outcomes among individuals suffering from neurological disorders. Implantable neural interfaces are vital components of the electrical neuromodulation system to ensure desirable performance; However, conventional devices are limited to a single function and are constructed with bulky and rigid materials, which often leads to mechanical incompatibility with soft tissue and an inability to adapt to the dynamic and complex 3D structures of biological systems. In addition, current implantable neural interfaces utilized in clinical settings primarily rely on wire-based techniques, which are associated with complications such as increased risk of infection, limited positioning options, and movement restrictions. Here, the state-of-art applications of electrical neuromodulation are presented. Material schemes and device structures that can be employed to develop robust and multifunctional neural interfaces, including flexibility, stretchability, biodegradability, self-healing, self-rolling, or morphing are discussed. Furthermore, multimodal wireless neuromodulation techniques, including optoelectronics, mechano-electrics, magnetoelectrics, inductive coupling, and electrochemically based self-powered devices are reviewed. In the end, future perspectives are given.

6.
Plant Physiol ; 195(1): 479-501, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38227428

Flowering is an essential process in fruit trees. Flower number and timing have a substantial impact on the yield and maturity of fruit. Ethylene and gibberellin (GA) play vital roles in flowering, but the mechanism of coordinated regulation of flowering in woody plants by GA and ethylene is still unclear. In this study, a lemon (Citrus limon L. Burm) 1-aminocyclopropane-1-carboxylic acid synthase gene (CiACS4) was overexpressed in Nicotiana tabacum and resulted in late flowering and increased flower number. Further transformation of citrus revealed that ethylene and starch content increased, and soluble sugar content decreased in 35S:CiACS4 lemon. Inhibition of CiACS4 in lemon resulted in effects opposite to that of 35S:CiACS4 in transgenic plants. Overexpression of the CiACS4-interacting protein ETHYLENE RESPONSE FACTOR3 (CiERF3) in N. tabacum resulted in delayed flowering and more flowers. Further experiments revealed that the CiACS4-CiERF3 complex can bind the promoters of FLOWERING LOCUS T (CiFT) and GOLDEN2-LIKE (CiFE) and suppress their expression. Moreover, overexpression of CiFE in N. tabacum led to early flowering and decreased flowers, and ethylene, starch, and soluble sugar contents were opposite to those in 35S:CiACS4 transgenic plants. Interestingly, CiFE also bound the promoter of CiFT. Additionally, GA3 and 1-aminocyclopropanecarboxylic acid (ACC) treatments delayed flowering in adult citrus, and treatment with GA and ethylene inhibitors increased flower number. ACC treatment also inhibited the expression of CiFT and CiFE. This study provides a theoretical basis for the application of ethylene to regulate flower number and mitigate the impacts of extreme weather on citrus yield due to delayed flowering.


Citrus , Ethylenes , Flowers , Gene Expression Regulation, Plant , Gibberellins , Plant Proteins , Plants, Genetically Modified , Gibberellins/metabolism , Citrus/genetics , Citrus/physiology , Citrus/growth & development , Flowers/genetics , Flowers/physiology , Flowers/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Ethylenes/metabolism , Nicotiana/genetics , Nicotiana/physiology , Nicotiana/growth & development , Lyases/metabolism , Lyases/genetics
7.
ACS Nano ; 18(5): 3969-3995, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38271679

Implantable chemical sensors built with flexible and biodegradable materials exhibit immense potential for seamless integration with biological systems by matching the mechanical properties of soft tissues and eliminating device retraction procedures. Compared with conventional hospital-based blood tests, implantable chemical sensors have the capability to achieve real-time monitoring with high accuracy of important biomarkers such as metabolites, neurotransmitters, and proteins, offering valuable insights for clinical applications. These innovative sensors could provide essential information for preventive diagnosis and effective intervention. To date, despite extensive research on flexible and bioresorbable materials for implantable electronics, the development of chemical sensors has faced several challenges related to materials and device design, resulting in only a limited number of successful accomplishments. This review highlights recent advancements in implantable chemical sensors based on flexible and biodegradable materials, encompassing their sensing strategies, materials strategies, and geometric configurations. The following discussions focus on demonstrated detection of various objects including ions, small molecules, and a few examples of macromolecules using flexible and/or bioresorbable implantable chemical sensors. Finally, we will present current challenges and explore potential future directions.


Wearable Electronic Devices , Prostheses and Implants , Electronics , Polymers/chemistry
8.
J Vasc Surg Venous Lymphat Disord ; 12(2): 101678, 2024 Mar.
Article En | MEDLINE | ID: mdl-37708938

OBJECTIVE: This study aimed to compare the efficacy of customized graduated elastic compression stockings (c-GECSs) based on lower leg parameter models with standard GECSs (s-GECSs) in patients with chronic venous disease (CVD). METHODS: In this randomized, single-blind, controlled trial, 79 patients with stage C2 or C3 CVD were assigned to one of two groups: c-GECSs or s-GECSs. The primary outcome was change to Venous Insufficiency Epidemiological and Economic Study Quality of Life (VEINES-QOL) scores at months 1, 3, and 6 as compared with baseline. Secondary outcomes included compliance with wearing ECSs, interface pressure at the smallest circumference of the ankle (point B) and the largest circumference of the calf (point C), and calf volume (CV). RESULTS: There were 13 pairs of s-GECS and 2 pairs of c-GECS that showed pressure values higher than the standard at either point B or C. The c-GECSs were significantly superior to s-GECSs in terms of score improvement at all three time points (month 1, 8.47 [95% confidence interval (CI), 7.47-9.45] vs 5.89 [95% CI, 5.00-6.78]; month 3, 9.60 [95% CI, 8.47-10.72] vs 6.72 [95% CI, 5.62-7.83]; month 6, 7.09 [95% CI, 5.93-8.24] vs 3.92 [95% CI, 2.67-5.18]; P < .0001). Besides, at month 1, the mean daily use time of the c-GECS and s-GECS groups was 10.7 and 9.5 hours, respectively (P < .05). Correlation analysis indicated a negative relationship between local high pressure and daily duration in the s-GECS group (rpb = -0.388; n = 38; P < .05). Variances in pressure were greater in the s-GECSs group. The c-GECSs showed advantage in maintaining pressure. Both c-GECSs and s-GECSs effectively reduced CV (mL), with no significant differences between groups (month 1, 90.0 [95% CI, 71.4-108.5] vs 85.0 [95% CI, 65.6-104.2]; month 3, 93.8 [95% CI, 69.7-117.8] vs 85.9 [95% CI, 65.5-106.2]; month 6, 70.8 [95% CI, 46.5-95.2]) vs 60.8 [95% CI, 44.1-77.5]). CONCLUSIONS: The c-GECSs based on individual leg parameter models significantly improved VEINES-QOL scores and provided stable and enduring pressure as compared with s-GECSs for patients with stage C2 or C3 CVD. Although both c-GECSs and s-GECSs effectively reduced CV, the superior fit and comfort of c-GECSs improved patient compliance. Hence, c-GECSs are a viable alternative for patients who have difficulty tolerating s-GECSs.


Stockings, Compression , Venous Insufficiency , Humans , Quality of Life , Single-Blind Method , Veins , Venous Insufficiency/therapy , Chronic Disease
9.
Nano Lett ; 23(24): 11693-11701, 2023 Dec 27.
Article En | MEDLINE | ID: mdl-38018768

Three-dimensional (3D) electronic systems with their potential for enhanced functionalities often require complex fabrication processes. This paper presents a water-based, stimuli-responsive approach for creating self-assembled 3D electronic systems, particularly suited for biorelated applications. We utilize laser scribing to programmatically shape a water-responsive bilayer, resulting in smart 3D electronic substrates. Control over the deformation direction, actuation time, and surface curvature of rolling structures is achieved by adjusting laser-scribing parameters, as validated through experiments and numerical simulations. Additionally, self-locking structures maintain the integrity of the 3D systems. This methodology enables the implementation of spiral twining electrodes for electrophysiological signal monitoring in plants. Furthermore, the integration of self-rolling electrodes onto peripheral nerves in a rodent model allows for stimulation and recording of in vivo neural activities with excellent biocompatibility. These innovations provide viable paths to next-generation 3D biointegrated electronic systems for life science studies and medical applications.


Electronics , Water , Electrodes , Peripheral Nerves , Electrophysiological Phenomena
10.
J Endovasc Ther ; : 15266028231197602, 2023 Sep 07.
Article En | MEDLINE | ID: mdl-37675790

PURPOSE: The objective was to determine the effectiveness and safety of paclitaxel-coated balloon angioplasty in hemodialysis patients with diabetic nephropathy (DN). MATERIALS AND METHODS: The outcomes of end-stage renal disease (ESRD) patients with peripheral artery disease (PAD) and treated with drug-coated balloon (DCB) angioplasty were retrospectively evaluated. The effectiveness outcomes were clinical improvement of the Rutherford classification and target lesion revascularization (TLR). Safety outcomes were all-cause mortality and amputation. RESULTS: Ninety-seven patients were treated with DCB angioplasty between December 2018 and December 2020. 87 (63.8±10.1 years) achieved technical success. Most patients had a Rutherford classification of at least grade 4. The mean lesion length was 169.8±73.8 mm, almost all had arterial calcification, and 31.0% had annular calcification. Wounds were present in 73.6% of the target limbs. The mean follow-up in this cohort was 13.4±7.4 months. The wound healing rate was 61.5% at the 12-month follow-up. All-cause mortality during 12 months of follow-up was 35.6%, amputation-free survival was 58.6%, and TLR was observed in 13 (15.3%) patients. At 3 and 12 months of follow-up, the Rutherford grade significantly improved (p<0.001). The Cox proportional hazards model revealed that wounds (hazard ratio [HR]=1.404, p=0.023) and annular calcification (HR=2.076, p=0.031) were independent predictors of amputation-free survival. CONCLUSIONS: Drug-coated balloon angioplasty in ESRD patients was effective and safe over the medium term. Wounds and annular calcification were independent predictors of amputation-free survival. CLINICAL IMPACT: The effectiveness of DCB angioplasty in ESRD patients and the factors affecting major outcome prognosis in this population remain limited. This study contributes valuable insights into the effectiveness and safety of paclitaxel-coated balloon angioplasty for PAD in hemodialysis patients. Medical professionals can now regard DCB angioplasty as a viable treatment. Identifying wound presence and annular calcification as predictors of amputation-free survival equips medical practitioners with a more tailored approach to patient management, potentially resulting in enhanced outcomes and more precise treatment strategies.

11.
ACS Appl Mater Interfaces ; 15(37): 43515-43523, 2023 Sep 20.
Article En | MEDLINE | ID: mdl-37677088

The use of conductive microneedles presents a promising solution for achieving high-fidelity electrophysiological recordings with minimal impact on the interfaced tissue. However, a conventional metal-based microneedle suffers from high electrochemical impedance and mechanical mismatch. In this paper, we report a dual-conductive (i.e., both ionic and electronic conductive) and stiffness-morphing microneedle patch (DSMNP) for high-fidelity electrophysiological recordings with reduced tissue damage. The polymeric network of the DSMNP facilitates electrolyte absorption and therefore allows the transition of stiffness from 6.82 to 0.5139 N m-1. Furthermore, the nanoporous conductive polymer increases the specific electrochemical surface area after tissue penetration, resulting in an ultralow specific impedance of 893.13 Ω mm2 at 100 Hz. DSMNPs detect variation potential and action potential in real time and cation fluctuations in plants in response to environmental stimuli. After swelling, DSMNPs mechanically "lock" into biological tissues and prevent motion artifact by providing a stable interface. These results demonstrate the potential of DSMNPs for various applications in the field of plant physiology research and smart agriculture.


Agriculture , Polymers , Ions , Electric Conductivity , Electric Impedance , Action Potentials
12.
Adv Healthc Mater ; 12(32): e2301859, 2023 Dec.
Article En | MEDLINE | ID: mdl-37750601

Peripheral nerve injury represents one of the most common types of traumatic damage, severely impairing motor and sensory functions, and posttraumatic nerve regeneration remains a major challenge. Electrical cues are critical bioactive factors that promote nerve regrowth, and bioartificial scaffolds incorporating conductive materials to enhance the endogenous electrical field have been demonstrated to be effective. The utilization of fully biodegradable scaffolds can eliminate material residues, and circumvent the need for secondary retrieval procedures. Here, a fully bioresorbable and conductive nerve scaffold integrating N-type silicon (Si) membranes is proposed, which can deliver both structural guidance and electrical cues for the repair of nerve defects. The entire scaffold is fully biodegradable, and the introduction of N-type Si can significantly promote the proliferation and production of neurotrophic factors of Schwann cells and enhance the calcium activity of dorsal root ganglion (DRG) neurons. The conductive scaffolds enable accelerated nerve regeneration and motor functional recovery in rodents with sciatic nerve transection injuries. This work sheds light on the advancement of bioresorbable and electrically active materials to achieve desirable neural interfaces and improved therapeutic outcomes, offering essential strategies for regenerative medicine.


Peripheral Nerve Injuries , Silicon , Humans , Absorbable Implants , Neurons , Nerve Regeneration/physiology , Peripheral Nerve Injuries/therapy , Ganglia, Spinal , Sciatic Nerve/physiology , Tissue Scaffolds/chemistry
13.
Adv Healthc Mater ; 12(29): e2302059, 2023 11.
Article En | MEDLINE | ID: mdl-37610041

Bioadhesive hydrogels have attracted considerable attention as innovative materials in medical interventions and human-machine interface engineering. Despite significant advances in their application, it remains critical to develop adhesive hydrogels that meet the requirements for biocompatibility, biodegradability, long-term strong adhesion, and efficient drug delivery vehicles in moist conditions. A biocompatible, biodegradable, soft, and stretchable hydrogel made from a combination of a biopolymer (unmodified natural gelatin) and stretchable biodegradable poly(ethylene glycol) diacrylate is proposed to achieve durable and tough adhesion and explore its use for convenient and effective intranasal hemostasis and drug administration. Desirable hemostasis efficacy and enhanced therapeutic outcomes for allergic rhinitis are accomplished. Biodegradation enables the spontaneous removal of materials without causing secondary damage and minimizes medical waste. Preliminary trials on human subjects provide an essential foundation for practical applications. This work elucidates material strategies for biodegradable adhesive hydrogels, which are critical to achieving robust material interfaces and advanced drug delivery platforms for novel clinical treatments.


Hydrogels , Rhinitis, Allergic , Humans , Hydrogels/therapeutic use , Adhesives , Epistaxis , Tissue Adhesions
14.
Phlebology ; 38(9): 605-612, 2023 Oct.
Article En | MEDLINE | ID: mdl-37651292

OBJECTIVE: Compression therapy with the use of graduated compression stockings (GCSs) is a common treatment strategy for chronic venous disease (CVD). However, there is no uniform and objective standard to assess adherence to the use of GCSs. The aim of this study is to develop and validate a GCS Compliance Scale (GCSAS) to fill gaps in internationally recognized comprehensive scales and provide a useful tool for future research. METHODS: The items included in the GCSAS were based on a review of the literature and open-ended interviews with experts, who screened the initial items using an item-level content validity index. Then, pilot tests were conducted three times with 50 participants. After exclusion of redundant and cross-loading items by exploratory factor analysis, 290 subjects were recruited to evaluate the reliability and validity of the proposed GCSAS. Analyses included internal consistency, test-retest reliability, split-half reliability, construct validity, criterion validity, convergent validity, and discriminant validity. RESULTS: The final GCSAS consisted of 17 items and 5 dimensions. The results of the exploratory factor analysis indicated that the variances of each factor explained were 22.03%, 14.85%, 14.74%, 14.16%, and 13.35%, and all 5 factors explained 79.13% of the variance among the 17 items. The factor loadings of all items were >0.7. Confirmatory factor analysis indicated that the indices were adequate. A significant positive correlation was found between the GCSAS and the Venous Insufficiency Epidemiological and Economic Study - Quality of Life questionnaire scores (r = 0.76, p < 0.001). The Cronbach's alpha coefficient was 0.90, test-retest reliability was 0.81, and split-half reliability was 0.92. CONCLUSIONS: The GCSAS showed good validity and reliability to assess compliance with the use of GCSs among patients with CVD.


Cardiovascular Diseases , Quality of Life , Humans , Reproducibility of Results , Stockings, Compression , Psychometrics/methods , Surveys and Questionnaires , Chronic Disease
15.
Sci Rep ; 13(1): 6936, 2023 04 28.
Article En | MEDLINE | ID: mdl-37117396

To assess the safety and efficacy of endovascular embolization techniques, we compared the short- to medium-term prognosis of coil embolization for symptomatic visceral aneurysms (SVAA) and asymptomatic visceral aneurysms (ASVAA) to identify risk factors associated with 30-day mortality. Explore the symptom profile and intrinsic associations of SVAA. A retrospective study of 66 consecutive patients at two tertiary care hospitals from 2010 to 2020 compared the short- to mid-term outcomes of 22 symptomatic VAAs and 44 asymptomatic VAAs treated with coil embolization. Univariate and log-rank tests were used to analyze the prognostic impact of SVAA and ASVAA. SVAA group had significantly higher 30-day mortality than ASVAA group (2(9.1%) vs 0, P = 0.042), both patients who died had symptomatic pseudoaneurysms. Perioperative complications such as end-organ ischemia (P = 0.293) and reintervention (P = 1) were similar in both groups. No difference in event-free survival was identified between the two groups (P = 0.900), but we found that the majority of pseudoaneurysms were SVAA (4/5) and that they had a much higher event rate than true aneurysms. In addition, dyslipidemia may be an influential factor in the development of VAA (P = 0.010). Coil embolization is a safe and effective method of treatment for VAA. Most pseudoaneurysms have symptoms such as abdominal pain and bleeding, and in view of their risk, more attention should be paid to symptomatic patients and the nature of the aneurysm should be determined as soon as possible to determine the next stage of treatment.


Aneurysm, False , Aneurysm , Embolization, Therapeutic , Endovascular Procedures , Humans , Aneurysm, False/therapy , Retrospective Studies , Treatment Outcome , Aneurysm/therapy , Aneurysm/diagnosis , Embolization, Therapeutic/adverse effects , Embolization, Therapeutic/methods , Endovascular Procedures/methods , Arteries/surgery , Viscera/blood supply
16.
World J Gastrointest Oncol ; 15(2): 352-367, 2023 Feb 15.
Article En | MEDLINE | ID: mdl-36908315

BACKGROUND: Immune checkpoint inhibitors (ICIs) have shown promising efficacy in treatment and clinical management of advanced gastric and gastroesophageal junction cancer. However, the inhibitors also cause immune-related adverse events (irAEs). The current systematic review and meta-analysis study aimed to investigate the incidence and nature of irAEs caused by ICIs. AIM: To investigate the incidence and nature of irAEs in advanced gastric and gastroesophageal junction cancer. METHODS: This systematic review was registered with PROSPERO (Reg. number: CRD42020152291). Data included in this study were collected from patients diagnosed with advanced gastric cancer or gastroesophageal junction cancer and treated with ICIs. A systematic literature search was conducted using the PubMed, EMBASE, and Cochrane Library databases. Meta-analysis was carried out using the single sample rate method. Synthesis and analysis of the data was conducted using Stata/SE and Review Manager Software. RESULTS: The patients enrolled in the present study included 14 patients from 14 case reports, 326 patients from 6 case series, and 1249 patients from 8 clinical trials. It was found that the overall incidence of irAEs was 16% [95% confidence interval (CI): 11-20] for all grades and 3% (95%CI: 2-4) for the severe grade. It was evident that the incidence of irAEs varied with the type of inhibitor and organs. A comparative study of the anti-programmed cell death receptor-1 (PD-1) and anti-programmed death receptor-ligand 1 (PD-L1) treatments showed that the anti-PD-1 group had a higher overall incidence of irAEs (20%) as compared with that of the anti-PD-L1 group (13%). Results of this study showed that the endocrine system experienced the highest incidence of organ-specific irAEs (7.4%), including hypothyroidism, hyperthyroidism, thyroiditis, diabetes, and adrenal insufficiency, followed by gastroenterology (2.2%), pulmonology (1.8%), neurology (1.4%), dermatology (1.4%), hematology (0.8%), and hepatology (0.7%). In clinical trials, it was found that the incidence of death related to irAEs was 1% (95%CI: 0-2.0), whereby colitis and interstitial lung diseases were the leading causes of death. CONCLUSION: It was evident that the incidence and nature of irAEs are both organ- and inhibitor-specific. The anti-PD-1 group had the highest incidence of all irAEs grades including the severe grades of irAEs. Early identification and management of irAEs allows clinical oncologists to effectively consider the pros and cons and hence enables them to strike a balance.

17.
ACS Nano ; 17(6): 5727-5739, 2023 03 28.
Article En | MEDLINE | ID: mdl-36897770

Given the advantages of high energy density and easy deployment, biodegradable primary battery systems remain as a promising power source to achieve bioresorbable electronic medicine, eliminating secondary surgeries for device retrieval. However, currently available biobatteries are constrained by operational lifetime, biocompatibility, and biodegradability, limiting potential therapeutic outcomes as temporary implants. Herein, we propose a fully biodegradable primary zinc-molybdenum (Zn-Mo) battery with a prolonged functional lifetime of up to 19 days and desirable energy capacity and output voltage compared with reported primary Zn biobatteries. The Zn-Mo battery system is shown to have excellent biocompatibility and biodegradability and can significantly promote Schwann cell proliferation and the axonal growth of dorsal root ganglia. The biodegradable battery module with 4 Zn-Mo cells in series using gelatin electrolyte accomplishes electrochemical generation of signaling molecules (nitric oxide, NO) that can modulate the behavior of the cellular network, with efficacy comparable with that of conventional power sources. This work sheds light on materials strategies and fabrication schemes to develop high-performance biodegradable primary batteries to achieve a fully bioresorbable electronic platform for innovative medical treatments that could be beneficial for health care.


Electric Power Supplies , Zinc , Electronics , Gelatin , Cell Proliferation , Molybdenum , Nitric Oxide
18.
Plant Physiol ; 192(3): 1947-1968, 2023 07 03.
Article En | MEDLINE | ID: mdl-36913259

Dwarfism is an agronomic trait that has substantial effects on crop yield, lodging resistance, planting density, and a high harvest index. Ethylene plays an important role in plant growth and development, including the determination of plant height. However, the mechanism by which ethylene regulates plant height, especially in woody plants, remains unclear. In this study, a 1-aminocyclopropane-1-carboxylic acid synthase (ACC) gene (ACS), which is involved in ethylene biosynthesis, was isolated from lemon (Citrus limon L. Burm) and named CiACS4. Overexpression of CiACS4 resulted in a dwarf phenotype in Nicotiana tabacum and lemon and increased ethylene release and decreased gibberellin (GA) content in transgenic plants. Inhibition of CiACS4 expression in transgenic citrus significantly increased plant height compared with the controls. Yeast two-hybrid assays revealed that CiACS4 interacted with an ethylene response factor (ERF), CiERF3. Further experiments revealed that the CiACS4-CiERF3 complex can bind to the promoters of 2 citrus GA20-oxidase genes, CiGA20ox1 and CiGA20ox2, and suppress their expression. In addition, another ERF transcription factor, CiERF023, identified using yeast one-hybrid assays, promoted CiACS4 expression by binding to its promoter. Overexpression of CiERF023 in N. tabacum caused a dwarfing phenotype. CiACS4, CiERF3, and CiERF023 expression was inhibited and induced by GA3 and ACC treatments, respectively. These results suggest that the CiACS4-CiERF3 complex may be involved in the regulation of plant height by regulating CiGA20ox1 and CiGA20ox2 expression levels in citrus.


Citrus , Gibberellins , Gibberellins/pharmacology , Gibberellins/metabolism , Citrus/genetics , Citrus/metabolism , Ethylenes/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
19.
Sci Adv ; 9(7): eabq7750, 2023 02 15.
Article En | MEDLINE | ID: mdl-36791200

Bone fractures and defects pose serious health-related issues on patients. For clinical therapeutics, synthetic scaffolds have been actively explored to promote critical-sized bone regeneration, and electrical stimulations are recognized as an effective auxiliary to facilitate the process. Here, we develop a three-dimensional (3D) biomimetic scaffold integrated with thin-film silicon (Si)-based microstructures. This Si-based hybrid scaffold not only provides a 3D hierarchical structure for guiding cell growth but also regulates cell behaviors via photo-induced electrical signals. Remotely controlled by infrared illumination, these Si structures electrically modulate membrane potentials and intracellular calcium dynamics of stem cells and potentiate cell proliferation and differentiation. In a rodent model, the Si-integrated scaffold demonstrates improved osteogenesis under optical stimulations. Such a wirelessly powered optoelectronic scaffold eliminates tethered electrical implants and fully degrades in a biological environment. The Si-based 3D scaffold combines topographical and optoelectronic stimuli for effective biological modulations, offering broad potential for biomedicine.


Biomimetics , Tissue Scaffolds , Tissue Scaffolds/chemistry , Osteogenesis , Bone Regeneration , Cell Differentiation , Printing, Three-Dimensional , Tissue Engineering
20.
Neuron ; 111(3): 387-404.e8, 2023 02 01.
Article En | MEDLINE | ID: mdl-36476978

Precise monitoring of internal temperature is vital for thermal homeostasis in mammals. For decades, warm-sensitive neurons (WSNs) within the preoptic area (POA) were thought to sense internal warmth, using this information as feedback to regulate body temperature (Tcore). However, the cellular and molecular mechanisms by which WSNs measure temperature remain largely undefined. Via a pilot genetic screen, we found that silencing the TRPC4 channel in mice substantially attenuated hypothermia induced by light-mediated heating of the POA. Loss-of-function studies of TRPC4 confirmed its role in warm sensing in GABAergic WSNs, causing additional defects in basal temperature setting, warm defense, and fever responses. Furthermore, TRPC4 antagonists and agonists bidirectionally regulated Tcore. Thus, our data indicate that TRPC4 is essential for sensing internal warmth and that TRPC4-expressing GABAergic WSNs function as a novel cellular sensor for preventing Tcore from exceeding set-point temperatures. TRPC4 may represent a potential therapeutic target for managing Tcore.


Body Temperature Regulation , Body Temperature , Mice , Animals , Body Temperature/physiology , Body Temperature Regulation/physiology , Hypothalamus , Preoptic Area/physiology , GABAergic Neurons , Mammals
...