Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 149: 109591, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679344

RESUMEN

Toll-like receptors (TLRs) are one of the extensively studied pattern recognition receptors (PRRs) and play crucial roles in the immune responses of vertebrates and invertebrates. In this study, 14 TLR genes were identified from the genome-wide data of Octopus sinensis. Protein structural domain analysis showed that most TLR proteins had three main structural domains: extracellular leucine-rich repeats (LRR), transmembrane structural domains, and intracellular Toll/IL-1 receptor domain (TIR). The results of subcellular localization prediction showed that the TLRs of O. sinensis were mainly located on the plasma membrane. The results of quantitative real-time PCR (qPCR) showed that the detected TLR genes were differentially expressed in the hemolymph, white bodies, hepatopancreas, gills, gill heart, intestine, kidney, and salivary gland of O. sinensis. Furthermore, the present study investigated the expression changes of O. sinensis TLR genes in hemolymph, white bodies, gills, and hepatopancreas in different phases (6 h, 12 h, 24 h, 48 h) after stimulation with PGN, poly(I: C) and Vibrio parahaemolyticus. The expression of most of the TLR genes was upregulated at different time points after infection with pathogens or stimulation with PAMPs, a few genes were unchanged or even down-regulated, and many of the TLR genes were much higher after V. parahaemolyticus infection than after PGN and poly(I:C) stimulation. The results of this study contribute to a better understanding of the molecular immune mechanisms of O. sinensis TLRs genes in resistance to pathogen stimulation.


Asunto(s)
Regulación de la Expresión Génica , Inmunidad Innata , Octopodiformes , Receptores Toll-Like , Vibrio parahaemolyticus , Animales , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología , Receptores Toll-Like/química , Vibrio parahaemolyticus/fisiología , Octopodiformes/genética , Octopodiformes/inmunología , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Filogenia , Perfilación de la Expresión Génica/veterinaria , Poli I-C/farmacología , Peptidoglicano/farmacología , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/química , Moléculas de Patrón Molecular Asociado a Patógenos/farmacología
2.
Dev Comp Immunol ; 147: 104757, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37302729

RESUMEN

A member of the immunoglobulin superfamily designated leucine-rich repeats and immunoglobulin-like domains protein-1 (lrig-1) encoding a protein with 1109 amino acids with a characteristic IGc2 domain was identified from the transcriptome data of mud crab Scylla paramamosain. Lrig-1 contained: one signaling peptide; one LRR_NT domain; nine LRR domains; three LRR_TYP domains; one LRR_CT domain; three IGc2 regions; one transmembrane region; C-terminal cytoplasmic tail. lrig-1 was widely expressed in all tissues of mud crab and was responsive in hemocytes to first and second Vibrio parahaemolyticus infections. lrig-1 knockdown mediated by RNAi repressed expression of several antimicrobial peptides significantly. Its orthologs in 19 crustacean species were identified and showed high conservation. These results suggest that lrig-1 have a vital role in mud crabs against V. parahaemolyticus infection through expression of multiple antimicrobial peptides. The results obtained in the present study imply the potential roles the lrig-1 played in immune priming in crabs.


Asunto(s)
Braquiuros , Vibrio parahaemolyticus , Animales , Reinfección , Proteínas de Artrópodos/metabolismo , Filogenia , Proteínas , Inmunoglobulinas/genética , Péptidos Antimicrobianos , Inmunidad Innata
3.
Artículo en Inglés | MEDLINE | ID: mdl-36842753

RESUMEN

In our previous study, we found that the Spfoxl-2 transcript was highly expressed in gonads and explored its potential target genes in the ovary of Scylla paramamosain. In the current study, we primally analyzed its potential target genes in the testis through RNAi and RNA-Seq technology and compared with that in the ovary. The results showed that a total of 7892 unigenes were differentially expressed after Spfoxl-2 silencing in the testis, including plenty of conserved genes involved in testicular development, such as Dmrt family genes, Sox family genes, Caspase family genes, Cdk family genes, Kinesin family genes, Fox family genes and other genes. Further analysis revealed that these differentially expressed genes (DEGs) were enriched in crucial pathways involved in spermatogenesis, such as DNA replication, Cell cycle, Spliceosome, Homologous recombination, Meiosis and Apoptosis. The comparison results of potential target genes in the ovary and testis reveal 135 common potential target genes, including some genes involved in the immune response. According to our knowledge, the present work was the first to disclose the functions of foxl-2 in the testis of crustacean species using transcriptome analysis. It not only identifies key genes and pathways involved in the testicular development of S. paramamosain, but also reveals a new molecular-level understanding of the function of foxl-2 in testicular development.


Asunto(s)
Braquiuros , Perfilación de la Expresión Génica , Masculino , Femenino , Animales , Interferencia de ARN , Gónadas , Testículo/metabolismo , Ovario/metabolismo , Braquiuros/metabolismo , Transcriptoma
4.
Mar Biotechnol (NY) ; 24(6): 1055-1065, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36173492

RESUMEN

In previous study, we reported the identification, tissue distribution, and the roles of Spdsx played in the testis, androgenic gland, and ovary in Scylla paramamosain. Here, we primally identify its potential target genes in the ovary with RNAi and RNA-Seq technology. By comparing the transcriptome data of two groups (ovaries that injected with dsRNA for EGFP and Dsx), we found that 6520 Unigenes were differentially expressed, including a plenty of conserved crucial genes involved in ovarian development, such as vitellogenin (vtg), vtg receptor (vtgR), apolipoprotein D, adenylate cyclase 3, adenylate cyclase 5, cyclin A, cyclin B, and cell division cycle 2 (cdc2). In addition, these DEGs were also enriched in pathways related to ovary development, including PI3K-Akt signaling pathway, MAPK signaling pathway, insulin signaling pathway, Wnt signaling pathway, relaxin signaling pathway, estrogen signaling pathway, progesterone-mediated oocyte maturation, ovarian steroidogenesis, and oocyte meiosis. Moreover, several genes were selected for qRT-PCR to validate the accuracy of the bioinformatic result. According to current transcriptome result, we speculate that the Spdsx is a crucial regulator of ovary development in S. paramamosain. To the best of our knowledge, the current study was the first report about dsx function through comparative transcriptome analysis in crustacean species, which not only identified relevant genes and pathways involved in ovarian development of S. paramamosain, but also shed light on the regulatory mechanisms of dsx at the molecular level in crustacean.


Asunto(s)
Braquiuros , Transcriptoma , Animales , Femenino , Masculino , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Braquiuros/genética , Diferenciación Sexual , Ovario , Perfilación de la Expresión Génica
5.
Mol Biol Rep ; 49(8): 7367-7376, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35715603

RESUMEN

BACKGROUND: Vitellogenin (Vtg) is the precursor of major yolk protein and plays a crucial role in the maturation of oocytes and the production of eggs in oviparous animals. Vitellogenin receptor (VtgR) mediates the transport of Vtg explicitly to oocytes in the membrane. In a previous study, we found that miR-34 can regulate the expression of some eyestalk genes and affect reproduction in mud crab Scylla paramamosain, one of the most important economic crabs on the coasts of southern China. METHODS AND RESULTS: In this study, firstly, we found that miR-34 can target at 3'-UTR of Vtg and VtgR genes by using bioinformatic tools and predicted miR-34 might depress the expression of Vtg and VtgR. Secondly, the relative luciferase activity of HEK293T cells co-transfected with miRNA mimic and pmir-RB-REPORTTM-Vtg/VtgR-3'UTR was significantly lower than those of cells co-transfected with mimic NC and pmir-RB-REPORTTM-Vtg/VtgR-3'UTR. Finally, in vivo experiments showed that agomiR-34 could repress the expression of Vtg and VtgR genes, while Antigomir-34 could promote the expression of these two genes. CONCLUSIONS: These results confirm our hypothesis and previous published results that miR-34 may indirectly regulate ovarian development by binding to the 3'-UTR of Vtg and VtgR genes and inhibiting their expression.


Asunto(s)
Braquiuros , MicroARNs , Regiones no Traducidas 3'/genética , Animales , Braquiuros/genética , Braquiuros/metabolismo , Proteínas del Huevo/genética , Proteínas del Huevo/metabolismo , Células HEK293 , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Receptores de Superficie Celular , Vitelogeninas/genética , Vitelogeninas/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-35017065

RESUMEN

Doublesex (Dsx) is a crucial member of the Dmrt gene family and plays a vital role in sex determination and differentiation among the animal kingdom. In the present study, a doublesex (designated as Spdsx) gene was identified and characterized for the first time in the mud crab, Scylla paramamosain. The Spdsx cDNA contains an 801 bp open reading frame (ORF) encoding 266 amino acids with a conserved DM domain. Meanwhile, to elucidate the conservation of Dsx, its orthologus were identified in several crustacean species as well. In addition, the expression pattern of Spdsx in various adult tissues and during embryo development was analyzed with qRT-PCR technology. Finally, the roles of Spdsx might play in the testis, androgenic gland, and ovary were analyzed by RNAi technology. The main results are as follows: (1) the Spdsx gene widely existed in analyzed crustacean species, and the multiple sequences alignment result indicated the conservation of Dsx was low except for the DM domain; (2) only one dsx gene was identified in analyzed crab and lobster, while 2 dsx genes (dsx-1 and dsx-2) were identified in shrimps; (3) the Spdsx gene was widely expressed in analyzed tissues, and the expression level in androgenic gland was obviously higher than that in other tissues. Interestingly, the expression level of Spdsx in the ovary was significantly higher than that in testis (p < 0.05); (4) The expression pattern of Spdsx during embryo development was divided into two groups: remained stable from blastula stage to 5 pairs of appendages stage; after 5 pairs of appendages stage, the expression level increased and remained stable from 7 pairs of appendages stage to hatching stage; (5) After the silencing of Spdsx, the expression level of marker genes in testis, ovary, and androgenic gland significantly changed, among which the expression level of vtg and vtgR in ovary down-regulated, the dmrt-like and dmrt-1a (exclusively expressed in testis) in testis up-regulated and the IAG in androgenic gland down-regulated. All the results above demonstrated that the Spdsx play crucial roles in regulating the reproduction system development of mud crab.


Asunto(s)
Braquiuros , Animales , Braquiuros/metabolismo , ADN Complementario/metabolismo , Femenino , Masculino , Ovario/metabolismo , Filogenia , Alineación de Secuencia , Testículo/metabolismo
7.
PeerJ ; 8: e9655, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32832276

RESUMEN

Myostatin (MSTN) is a negative regulator of muscle growth, which restrains the proliferation and differentiation of myoblasts. To understand the role of two mstn genes of Takifugu bimaculatus, the full-length cDNAs of 1131 bp Tbmstn1 and 1,080 bp Tbmstn2 were obtained from the T. bimaculatus' genomic database, which encodes 376 and 359 amino acids, respectively. The results of qRT-PCR showed that Tbmstn1 was expressed in the eye, kidney, spleen, skeletal muscle, gill, and brain, and the expression level in the skeletal muscle was extremely significantly higher than in other examined tissues. Tbmstn2 was expressed in the skin, skeletal muscle, gill, and brain, and had the highest expression in the skeletal muscle, followed by expression in the brain. Meanwhile, in different stages of embryonic development, the expression of Tbmstn1 started from the gastrula stage. Its expression in the eye-pigment formation stage and hatching stage was significantly higher than that in other stages. The Tbmstn2 was expressed in all examined embryonic stages with different levels, and the highest expression was detected in the eye-pigment formation stage. These results suggested that Tbmstn1 and Tbmstn2 may involve in the development of skeletal muscle, and Tbmstn2 may be related to the formation of nervous system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...