Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 118
1.
Int J Clin Health Psychol ; 24(2): 100458, 2024.
Article En | MEDLINE | ID: mdl-38623146

Background/Objective. Enlarged lateral ventricle (LV) volume and decreased volume in the corpus callosum (CC) are hallmarks of schizophrenia (SZ). We previously showed an inverse correlation between LV and CC volumes in SZ, with global functioning decreasing with increased LV volume. This study investigates the relationship between LV volume, CC abnormalities, and the microRNA MIR137 and its regulated genes in SZ, because of MIR137's essential role in neurodevelopment. Methods. Participants were 1224 SZ probands and 1466 unaffected controls from the GENUS Consortium. Brain MRI scans, genotype, and clinical data were harmonized across cohorts and employed in the analyses. Results. Increased LV volumes and decreased CC central, mid-anterior, and mid-posterior volumes were observed in SZ probands. The MIR137-regulated ephrin pathway was significantly associated with CC:LV ratio, explaining a significant proportion (3.42 %) of CC:LV variance, and more than for LV and CC separately. Other pathways explained variance in either CC or LV, but not both. CC:LV ratio was also positively correlated with Global Assessment of Functioning, supporting previous subsample findings. SNP-based heritability estimates were higher for CC central:LV ratio (0.79) compared to CC or LV separately. Discussion. Our results indicate that the CC:LV ratio is highly heritable, influenced in part by variation in the MIR137-regulated ephrin pathway. Findings suggest that the CC:LV ratio may be a risk indicator in SZ that correlates with global functioning.

2.
AJNR Am J Neuroradiol ; 44(7): 768-775, 2023 07.
Article En | MEDLINE | ID: mdl-37348967

BACKGROUND AND PURPOSE: While brain iron dysregulation has been observed in several neurodegenerative disorders, its association with the progressive neurodegeneration in Niemann-Pick type C is unknown. Systemic iron abnormalities have been reported in patients with Niemann-Pick type C and in animal models of Niemann-Pick type C. In this study, we examined brain iron using quantitative susceptibility mapping MR imaging in individuals with Niemann-Pick type C compared with healthy controls. MATERIALS AND METHODS: A cohort of 10 patients with adolescent- and adult-onset Niemann-Pick type C and 14 age- and sex-matched healthy controls underwent 7T brain MR imaging with T1 and quantitative susceptibility mapping acquisitions. A probing whole-brain voxelwise comparison of quantitative susceptibility mapping between groups was conducted. Mean quantitative susceptibility mapping in the ROIs (thalamus, hippocampus, putamen, caudate nucleus, and globus pallidus) was further compared. The correlations between regional volume, quantitative susceptibility mapping values, and clinical features, which included disease severity on the Iturriaga scale, cognitive function, and the Social and Occupational Functioning Assessment Scale, were explored as secondary analyses. RESULTS: We observed lower volume in the thalamus and voxel clusters of higher quantitative susceptibility mapping in the pulvinar nuclei bilaterally in patients with Niemann-Pick type C compared with the control group. In patients with Niemann-Pick type C, higher quantitative susceptibility mapping in the pulvinar nucleus clusters correlated with lower volume of the thalamus on both sides. Moreover, higher quantitative susceptibility mapping in the right pulvinar cluster was associated with greater disease severity. CONCLUSIONS: Our findings suggest iron deposition in the pulvinar nucleus in Niemann-Pick type C disease, which is associated with thalamic atrophy and disease severity. This preliminary evidence supports the link between iron and neurodegeneration in Niemann-Pick type C, in line with existing literature on other neurodegenerative disorders.


Iron , Niemann-Pick Disease, Type C , Humans , Brain/diagnostic imaging , Thalamus , Cognition , Magnetic Resonance Imaging/methods , Brain Mapping
3.
Mol Psychiatry ; 28(6): 2301-2311, 2023 06.
Article En | MEDLINE | ID: mdl-37173451

BACKGROUND: Alterations in brain connectivity may underlie neuropsychiatric conditions such as schizophrenia. We here assessed the degree of convergence of frontostriatal fiber projections in 56 young adult healthy controls (HCs) and 108 matched Early Psychosis-Non-Affective patients (EP-NAs) using our novel fiber cluster analysis of whole brain diffusion magnetic resonance imaging tractography. METHODS: Using whole brain tractography and our fiber clustering methodology on harmonized diffusion magnetic resonance imaging data from the Human Connectome Project for Early Psychosis we identified 17 white matter fiber clusters that connect frontal cortex (FCtx) and caudate (Cd) per hemisphere in each group. To quantify the degree of convergence and, hence, topographical relationship of these fiber clusters, we measured the inter-cluster mean distances between the endpoints of the fiber clusters at the level of the FCtx and of the Cd, respectively. RESULTS: We found (1) in both groups, bilaterally, a non-linear relationship, yielding convex curves, between FCtx and Cd distances for FCtx-Cd connecting fiber clusters, driven by a cluster projecting from inferior frontal gyrus; however, in the right hemisphere, the convex curve was more flattened in EP-NAs; (2) that cluster pairs in the right (p = 0.03), but not left (p = 0.13), hemisphere were significantly more convergent in HCs vs EP-NAs; (3) in both groups, bilaterally, similar clusters projected significantly convergently to the Cd; and, (4) a significant group by fiber cluster pair interaction for 2 right hemisphere fiber clusters (numbers 5, 11; p = .00023; p = .00023) originating in selective PFC subregions. CONCLUSIONS: In both groups, we found the FCtx-Cd wiring pattern deviated from a strictly topographic relationship and that similar clusters projected significantly more convergently to the Cd. Interestingly, we also found a significantly more convergent pattern of connectivity in HCs in the right hemisphere and that 2 clusters from PFC subregions in the right hemisphere significantly differed in their pattern of connectivity between groups.


Psychotic Disorders , White Matter , Young Adult , Humans , Healthy Volunteers , Cadmium , White Matter/pathology , Brain/pathology , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/pathology
5.
Cereb Cortex ; 31(12): 5308-5318, 2021 10 22.
Article En | MEDLINE | ID: mdl-34180506

To assess normal organization of frontostriatal brain wiring, we analyzed diffusion magnetic resonance imaging (dMRI) scans in 100 young adult healthy subjects (HSs). We identified fiber clusters intersecting the frontal cortex and caudate, a core component of associative striatum, and quantified their degree of deviation from a strictly topographic pattern. Using whole brain dMRI tractography and an automated tract parcellation clustering method, we extracted 17 white matter fiber clusters per hemisphere connecting the frontal cortex and caudate. In a novel approach to quantify the geometric relationship among clusters, we measured intercluster endpoint distances between corresponding cluster pairs in the frontal cortex and caudate. We show first, the overall frontal cortex wiring pattern of the caudate deviates from a strictly topographic organization due to significantly greater convergence in regionally specific clusters; second, these significantly convergent clusters originate in subregions of ventrolateral, dorsolateral, and orbitofrontal prefrontal cortex (PFC); and, third, a similar organization in both hemispheres. Using a novel tractography method, we find PFC-caudate brain wiring in HSs deviates from a strictly topographic organization due to a regionally specific pattern of cluster convergence. We conjecture cortical subregions projecting to the caudate with greater convergence subserve functions that benefit from greater circuit integration.


Diffusion Tensor Imaging , White Matter , Brain/diagnostic imaging , Cluster Analysis , Diffusion Tensor Imaging/methods , Healthy Volunteers , Humans , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , White Matter/diagnostic imaging , Young Adult
6.
Brain Imaging Behav ; 13(2): 472-481, 2019 Apr.
Article En | MEDLINE | ID: mdl-29667043

The "cognitive dysmetria" hypothesis suggests that impairments in cognition and behavior in patients with schizophrenia can be explained by disruptions in the cortico-cerebellar-thalamic-cortical circuit. In this study we examine thalamo-cortical connections in patients with first-episode schizophrenia (FESZ). White matter pathways are investigated that connect the thalamus with three frontal cortex regions including the anterior cingulate cortex (ACC), ventrolateral prefrontal cortex (VLPFC), and lateral oribitofrontal cortex (LOFC). We use a novel method of two-tensor tractography in 26 patients with FESZ compared to 31 healthy controls (HC), who did not differ on age, sex, or education. Dependent measures were fractional anisotropy (FA), Axial Diffusivity (AD), and Radial Diffusivity (RD). Subjects were also assessed using clinical functioning measures including the Global Assessment of Functioning (GAF) Scale, the Global Social Functioning Scale (GF: Social), and the Global Role Functioning Scale (GF: Role). FESZ patients showed decreased FA in the right thalamus-right ACC and right-thalamus-right LOFC pathways compared to healthy controls (HCs). In the right thalamus-right VLPFC tract, we found decreased FA and increased RD in the FESZ group compared to HCs. After correcting for multiple comparisons, reductions in FA in the right thalamus- right ACC and the right thalamus- right VLPC tracts remained significant. Moreover, reductions in FA were significantly associated with lower global functioning scores as well as lower social and role functioning scores. We report the first diffusion tensor imaging study of white matter pathways connecting the thalamus to three frontal regions. Findings of white matter alterations and clinical associations in the thalamic-cortical component of the cortico-cerebellar-thalamic-cortical circuit in patients with FESZ support the cognitive dysmetria hypothesis and further suggest the possible involvement of myelin sheath pathology and axonal membrane disruption in the pathogenesis of the disorder.


Diffusion Tensor Imaging/methods , Image Processing, Computer-Assisted , Schizophrenia/pathology , Thalamus/pathology , White Matter/pathology , Adult , Anisotropy , Brain/pathology , Cross-Sectional Studies , Female , Gyrus Cinguli/pathology , Humans , Male , Prefrontal Cortex/pathology , Young Adult
7.
Cereb Cortex ; 29(4): 1584-1593, 2019 04 01.
Article En | MEDLINE | ID: mdl-29701751

Progress in neurodevelopmental brain research has been achieved through the use of animal models. Such models not only help understanding biological changes that govern brain development, maturation and aging, but are also essential for identifying possible mechanisms of neurodevelopmental and age-related chronic disorders, and to evaluate possible interventions with potential relevance to human disease. Genetic relationship of rhesus monkeys to humans makes those animals a great candidate for such models. With the typical lifespan of 25 years, they undergo cognitive maturation and aging that is similar to this observed in humans. Quantitative structural neuroimaging has been proposed as one of the candidate in vivo biomarkers for tracking white matter brain maturation and aging. While lifespan trajectories of white matter changes have been mapped in humans, such knowledge is not available for nonhuman primates. Here, we analyze and model lifespan trajectories of white matter microstructure using in vivo diffusion imaging in a sample of 44 rhesus monkeys. We report quantitative parameters (including slopes and peaks) of lifespan trajectories for 8 individual white matter tracts. We show different trajectories for cellular and extracellular microstructural imaging components that are associated with white matter maturation and aging, and discuss similarities and differences between those in humans and rhesus monkeys, the importance of our findings, and future directions for the field. Significance Statement: Quantitative structural neuroimaging has been proposed as one of the candidate in vivo biomarkers for tracking brain maturation and aging. While lifespan trajectories of structural white matter changes have been mapped in humans, such knowledge is not available for rhesus monkeys. We present here results of the analysis and modeling of the lifespan trajectories of white matter microstructure using in vivo diffusion imaging in a sample of 44 rhesus monkeys (age 4-27). We report and anatomically map lifespan changes related to cellular and extracellular microstructural components that are associated with white matter maturation and aging.


Brain/growth & development , Longevity/physiology , White Matter/growth & development , Animals , Diffusion Tensor Imaging , Female , Macaca mulatta , Male , Models, Neurological
8.
Neuroimage Clin ; 19: 360-373, 2018.
Article En | MEDLINE | ID: mdl-30013919

Background: Elucidating developmental trajectories of white matter (WM) microstructure is critically important for understanding normal development and regional vulnerabilities in several brain disorders. Diffusion Weighted Imaging (DWI) is currently the method of choice for in-vivo white matter assessment. A majority of neonatal studies use the standard Diffusion Tensor Imaging (DTI) model although more advanced models such as the Neurite Orientation Dispersion and Density Imaging (NODDI) model and the Gaussian Mixture Model (GMM) have been used in adult population. In this study, we compare the ability of these three diffusion models to detect regional white matter maturation in typically developing control (TDC) neonates and regional abnormalities in neonates with congenital heart disease (CHD). Methods: Multiple b-value diffusion Magnetic Resonance Imaging (dMRI) data were acquired from TDC neonates (N = 16) at 38 to 47 gestational weeks (GW) and CHD neonates (N = 19) aged 37 weeks to 41 weeks. Measures calculated from the diffusion signal included not only Mean Diffusivity (MD) and Fractional Anisotropy (FA) derived from the standard DTI model, but also three advanced diffusion measures, namely, the fiber Orientation Dispersion Index (ODI), the isotropic volume fraction (Viso), and the intracellular volume fraction (Vic) derived from the NODDI model. Further, we used two novel measures from a non-parametric GMM, namely the Return-to-Origin Probability (RTOP) and Return-to-Axis Probability (RTAP), which are sensitive to axonal/cellular volume and density respectively. Using atlas-based registration, 22 white matter regions (6 projection, 4 association, and 1 callosal pathways bilaterally in each hemisphere) were selected and the mean value of all 7 measures were calculated in each region. These values were used as dependent variables, with GW as the independent variable in a linear regression model. Finally, we compared CHD and TDC groups on these measures in each ROI after removing age-related trends from both the groups. Results: Linear analysis in the TDC population revealed significant correlations with GW (age) in 12 projection pathways for MD, Vic, RTAP, and 11 pathways for RTOP. Several association pathways were also significantly correlated with GW for MD, Vic, RTAP, and RTOP. The right callosal pathway was significantly correlated with GW for Vic. Consistent with the pathophysiology of altered development in CHD, diffusion measures demonstrated differences in the association pathways involved in language systems, namely the Uncinate Fasciculus (UF), the Inferior Fronto-occipital Fasciculus (IFOF), and the Superior Longitudinal Fasciculus (SLF). Overall, the group comparison between CHD and TDC revealed lower FA, Vic, RTAP, and RTOP for CHD bilaterally in the a) UF, b) Corpus Callosum (CC), and c) Superior Fronto-Occipital Fasciculus (SFOF). Moreover, FA was lower for CHD in the a) left SLF, b) bilateral Anterior Corona Radiata (ACR) and left Retrolenticular part of the Internal Capsule (RIC). Vic was also lower for CHD in the left Posterior Limb of the Internal Capsule (PLIC). ODI was higher for CHD in the left CC. RTAP was lower for CHD in the left IFOF, while RTOP was lower in CHD in the: a) left ACR, b) left IFOF and c) right Anterior Limb of the Internal Capsule (ALIC). Conclusion: In this study, all three methods revealed the expected changes in the WM regions during the early postnatal weeks; however, GMM outperformed DTI and NODDI as it showed significantly larger effect sizes while detecting differences between the TDC and CHD neonates. Future studies based on a larger sample are needed to confirm these results and to explore clinical correlates.


Brain/diagnostic imaging , Heart Defects, Congenital/diagnostic imaging , White Matter/diagnostic imaging , Cross-Sectional Studies , Diffusion Magnetic Resonance Imaging , Female , Humans , Infant, Newborn , Male , Nerve Net/diagnostic imaging
9.
Brain Imaging Behav ; 11(5): 1258-1277, 2017 Oct.
Article En | MEDLINE | ID: mdl-27714552

Originally, the middle longitudinal fascicle (MdLF) was defined as a long association fiber tract connecting the superior temporal gyrus and temporal pole with the angular gyrus. More recently its description has been expanded to include all long postrolandic cortico-cortical association connections of the superior temporal gyrus and dorsal temporal pole with the parietal and occipital lobes. Despite its location and size, which makes MdLF one of the most prominent cerebral association fiber tracts, its discovery in humans is recent. Given the absence of a gold standard in humans for this fiber tract, its precise and complete connectivity remains to be determined with certainty. In this study using high angular resolution diffusion MRI (HARDI), we delineated for the first time, six major fiber connections of the human MdLF, four of which are temporo-parietal and two temporo-occipital, by examining morphology, topography, cortical connections, biophysical measures, volume and length in seventy brains. Considering the cortical affiliations of the different connections of MdLF we suggested that this fiber tract may be related to language, attention and integrative higher level visual and auditory processing associated functions. Furthermore, given the extensive connectivity provided to superior temporal gyrus and temporal pole with the parietal and occipital lobes, MdLF may be involved in several neurological and psychiatric conditions such as primary progressive aphasia and other aphasic syndromes, some forms of behavioral variant of frontotemporal dementia, atypical forms of Alzheimer's disease, corticobasal degeneration, schizophrenia as well as attention-deficit/hyperactivity Disorder and neglect disorders.


Occipital Lobe/anatomy & histology , Parietal Lobe/anatomy & histology , Temporal Lobe/anatomy & histology , White Matter/anatomy & histology , Adolescent , Adult , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Female , Humans , Male , Middle Aged , Neural Pathways/anatomy & histology , Neural Pathways/diagnostic imaging , Occipital Lobe/diagnostic imaging , Organ Size , Parietal Lobe/diagnostic imaging , Temporal Lobe/diagnostic imaging , White Matter/diagnostic imaging , Young Adult
10.
Neuroimage ; 135: 311-23, 2016 07 15.
Article En | MEDLINE | ID: mdl-27138209

We propose a novel method to harmonize diffusion MRI data acquired from multiple sites and scanners, which is imperative for joint analysis of the data to significantly increase sample size and statistical power of neuroimaging studies. Our method incorporates the following main novelties: i) we take into account the scanner-dependent spatial variability of the diffusion signal in different parts of the brain; ii) our method is independent of compartmental modeling of diffusion (e.g., tensor, and intra/extra cellular compartments) and the acquired signal itself is corrected for scanner related differences; and iii) inter-subject variability as measured by the coefficient of variation is maintained at each site. We represent the signal in a basis of spherical harmonics and compute several rotation invariant spherical harmonic features to estimate a region and tissue specific linear mapping between the signal from different sites (and scanners). We validate our method on diffusion data acquired from seven different sites (including two GE, three Philips, and two Siemens scanners) on a group of age-matched healthy subjects. Since the extracted rotation invariant spherical harmonic features depend on the accuracy of the brain parcellation provided by Freesurfer, we propose a feature based refinement of the original parcellation such that it better characterizes the anatomy and provides robust linear mappings to harmonize the dMRI data. We demonstrate the efficacy of our method by statistically comparing diffusion measures such as fractional anisotropy, mean diffusivity and generalized fractional anisotropy across multiple sites before and after data harmonization. We also show results using tract-based spatial statistics before and after harmonization for independent validation of the proposed methodology. Our experimental results demonstrate that, for nearly identical acquisition protocol across sites, scanner-specific differences can be accurately removed using the proposed method.


Algorithms , Diffusion Magnetic Resonance Imaging/instrumentation , Diffusion Magnetic Resonance Imaging/methods , Image Interpretation, Computer-Assisted/instrumentation , Image Interpretation, Computer-Assisted/methods , Subtraction Technique/instrumentation , Adult , Equipment Design , Equipment Failure Analysis , Female , Humans , Image Enhancement/methods , Information Storage and Retrieval/methods , Male , Reproducibility of Results , Sensitivity and Specificity
11.
Hum Brain Mapp ; 35(8): 3841-56, 2014 Aug.
Article En | MEDLINE | ID: mdl-24382651

Many studies have observed altered neurofunctional and structural organization in the aging brain. These observations from functional neuroimaging studies show a shift in brain activity from the posterior to the anterior regions with aging (PASA model), as well as a decrease in cortical thickness, which is more pronounced in the frontal lobe followed by the parietal, occipital, and temporal lobes (retrogenesis model). However, very little work has been done using diffusion MRI (dMRI) with respect to examining the structural tissue alterations underlying these neurofunctional changes in the gray matter. Thus, for the first time, we propose to examine gray matter changes using diffusion MRI in the context of aging. In this work, we propose a novel dMRI based measure of gray matter "heterogeneity" that elucidates these functional and structural models (PASA and retrogenesis) of aging from the viewpoint of diffusion MRI. In a cohort of 85 subjects (all males, ages 15-55 years), we show very high correlation between age and "heterogeneity" (a measure of structural layout of tissue in a region-of-interest) in specific brain regions. We examine gray matter alterations by grouping brain regions into anatomical lobes as well as functional zones. Our findings from dMRI data connects the functional and structural domains and confirms the "retrogenesis" hypothesis of gray matter alterations while lending support to the neurofunctional PASA model of aging in addition to showing the preservation of paralimbic areas during healthy aging.


Aging/pathology , Brain/pathology , Gray Matter/pathology , Adolescent , Adult , Cohort Studies , Diffusion Magnetic Resonance Imaging , Humans , Male , Middle Aged , Models, Neurological , Signal Processing, Computer-Assisted , Young Adult
12.
Transl Psychiatry ; 4: e346, 2014 Jan 14.
Article En | MEDLINE | ID: mdl-24424392

Several genes have recently been identified as risk factors for schizophrenia (SZ) by genome-wide association studies (GWAS), including ZNF804A which is thought to function in transcriptional regulation. However, the downstream pathophysiological changes that these genes confer remain to be elucidated. In 143 subjects (68 clinical high risk, first episode or chronic cases; 75 controls), we examined the association between 21 genetic markers previously identified by SZ GWAS or associated with putative intermediate phenotypes of SZ against three event-related potential (ERP) measures: mismatch negativity (MMN), amplitude of P300 during an auditory oddball task, and P300 amplitude during an auditory novelty oddball task. Controlling for age and sex, significant genetic association surpassing Bonferroni correction was detected between ZNF804A marker rs1344706 and P300 amplitude elicited by novel sounds (beta=4.38, P=1.03 × 10(-4)), which is thought to index orienting of attention to unexpected, salient stimuli. Subsequent analyses revealed that the association was driven by the control subjects (beta=6.35, P=9.08 × 10(-5)), and that the risk allele was correlated with higher novel P300b amplitude, in contrast to the significantly lower amplitude observed in cases compared to controls. Novel P300b amplitude was significantly correlated with a neurocognitive measure of auditory attention under interference conditions, suggesting a relationship between novel P300b amplitude and higher-order attentional processes. Our results suggest pleiotropic effects of ZNF804A on risk for SZ and neural mechanisms that are indexed by the novel P300b ERP component.


Attention/physiology , Event-Related Potentials, P300/genetics , Evoked Potentials, Auditory/genetics , Kruppel-Like Transcription Factors/genetics , Schizophrenia/genetics , Adolescent , Adult , Biomarkers , Electroencephalography , Event-Related Potentials, P300/physiology , Evoked Potentials, Auditory/physiology , Female , Genetic Predisposition to Disease/genetics , Humans , Male , Schizophrenia/physiopathology , Young Adult
13.
Cereb Cortex ; 24(5): 1389-96, 2014 May.
Article En | MEDLINE | ID: mdl-23307635

The normal human brain is characterized by a pattern of gross anatomical asymmetry. This pattern, known as the "torque", is associated with a sexual dimorphism: The male brain tends to be more asymmetric than that of the female. This fact, along with well-known sex differences in brain development (faster in females) and onset of psychosis (earlier with worse outcome in males), has led to the theory that schizophrenia is a disorder in which sex-dependent abnormalities in the development of brain torque, the correlate of the capacity for language, cause alterations in interhemispheric connectivity, which are causally related to psychosis (Crow TJ, Paez P, Chance SE. 2007. Callosal misconnectivity and the sex difference in psychosis. Int Rev Psychiatry. 19(4):449-457.). To provide evidence toward this theory, we analyze the geometry of interhemispheric white matter connections in adolescent-onset schizophrenia, with a particular focus on sex, using a recently introduced framework for white matter geometry computation in diffusion tensor imaging data (Savadjiev P, Kindlmann GL, Bouix S, Shenton ME, Westin CF. 2010. Local white geometry from diffusion tensor gradients. Neuroimage. 49(4):3175-3186.). Our results reveal a pattern of sex-dependent white matter geometry abnormalities that conform to the predictions of Crow's torque theory and correlate with the severity of patients' symptoms. To the best of our knowledge, this is the first study to associate geometrical differences in white matter connectivity with torque in schizophrenia.


Schizophrenia/pathology , Sex Characteristics , White Matter/pathology , Adolescent , Depression/etiology , Diffusion Magnetic Resonance Imaging , Female , Humans , Image Processing, Computer-Assisted , Linear Models , Male , Psychiatric Status Rating Scales , Schizophrenia/complications , White Matter/growth & development
14.
Schizophr Res ; 151(1-3): 229-37, 2013 Dec.
Article En | MEDLINE | ID: mdl-24176576

BACKGROUND: Abnormalities in language and language neural circuitry are observed in schizophrenia (SZ). Similar, but less pronounced language deficits are also seen in young first-degree relatives of people with SZ, who are at higher familial risk (FHR) for the disorder than the general population. The neural underpinnings of these deficits in people with FHR are unclear. METHODS: Participants were 43 people with FHR and 32 comparable controls. fMRI scans were collected while participants viewed associated and unrelated word pairs, and performed a lexical decision task. fMRI analyses conducted in SPM8 examined group differences in the modulation of hemodynamic activity by semantic association. RESULTS: There were no group differences in demographics, IQ or behavioral semantic priming, but FHR participants had more schizotypal traits than controls. Controls exhibited the expected suppression of hemodynamic activity to associated versus unrelated word pairs. Compared to controls, FHR participants showed an opposite pattern of hemodynamic modulation to associated versus unrelated word pairs, in the left inferior frontal gyrus (IFG), right superior and middle temporal gyrus (STG) and the left cerebellum. Group differences in activation were significant, FWE-corrected for multiple comparisons (p<0.05). Activity within the IFG during the unrelated condition predicted schizotypal symptoms in FHR participants. CONCLUSIONS: FHR for SZ is associated with abnormally increased neural activity to semantic associates within an inferior frontal/temporal network. This might increase the risk of developing unusual ideas, perceptions and disorganized language that characterize schizotypal traits, potentially predicting which individuals are at greater risk to develop a psychotic disorder.


Brain Mapping , Brain/physiopathology , Language , Schizophrenia/pathology , Schizophrenic Psychology , Adult , Analysis of Variance , Brain/blood supply , Female , Humans , Image Processing, Computer-Assisted , Language Tests , Linear Models , Male , Neuropsychological Tests , Oxygen/blood , Reaction Time , Schizophrenia/physiopathology , Semantics , Young Adult
15.
Schizophr Res ; 148(1-3): 67-73, 2013 Aug.
Article En | MEDLINE | ID: mdl-23800617

Siblings of patients diagnosed with schizophrenia are at elevated risk for developing this disorder. The nature of such risk associated with brain abnormalities, and whether such abnormalities are similar to those observed in schizophrenia, remain unclear. Deficits in language processing are frequently reported in increased risk populations. Interestingly, white matter pathology involving fronto-temporal language pathways, including arcuate fasciculus (AF), uncinate fasciculus (UF), and inferior occipitofrontal fasciculus (IOFF), are frequently reported in schizophrenia. In this study, high spatial and directional resolution diffusion MRI data was obtained on a 3T magnet from 33 subjects with increased familial risk for developing schizophrenia, and 28 control subjects. Diffusion tractography was performed to measure white matter integrity within AF, UF, and IOFF. To understand these abnormalities, Fractional Anisotropy (FA, a measure of tract integrity) and Trace (a measure of overall diffusion), were combined with more specific measures of axial diffusivity (AX, a putative measure of axonal integrity) and radial diffusivity (RD, a putative measure of myelin integrity). Results revealed a significant decrease in Trace within IOFF, and a significant decrease in AX in all tracts. FA and RD anomalies, frequently reported in schizophrenia, were not observed. Moreover, AX group effect was modulated by age, with increased risk subjects demonstrating a deviation from normal maturation trajectory. Findings suggest that familial risk for schizophrenia may be associated with abnormalities in axonal rather than myelin integrity, and possibly associated with disruptions in normal brain maturation. AX should be considered a possible biomarker of risk for developing schizophrenia.


Cerebral Cortex/pathology , Diffusion Tensor Imaging/methods , Language Disorders/etiology , Language Disorders/pathology , Nerve Fibers, Myelinated/pathology , Schizophrenia/complications , Adolescent , Adult , Anisotropy , Female , Humans , Image Processing, Computer-Assisted , Male , Young Adult
16.
Brain Imaging Behav ; 7(3): 335-52, 2013 Sep.
Article En | MEDLINE | ID: mdl-23686576

The middle longitudinal fascicle (MdLF) is a major fiber connection running principally between the superior temporal gyrus and the parietal lobe, neocortical regions of great biological and clinical interest. Although one of the most prominent cerebral association fiber tracts, it has only recently been discovered in humans. In this high angular resolution diffusion imaging (HARDI) MRI study, we delineated the two major fiber connections of the human MdLF, by examining morphology, topography, cortical connections, biophysical measures, volume and length in seventy-four brains. These two fiber connections course together through the dorsal temporal pole and the superior temporal gyrus maintaining a characteristic topographic relationship in the mediolateral and ventrodorsal dimensions. As these pathways course towards the parietal lobe, they split to form separate fiber pathways, one following a ventrolateral trajectory and connecting with the angular gyrus and the other following a dorsomedial route and connecting with the superior parietal lobule. Based on the functions of their cortical affiliations, we suggest that the superior temporal-angular connection of the MdLF, i.e., STG(MdLF)AG plays a role in language and attention, whereas the superior temporal-superior parietal connection of the MdLF, i.e., STG(MdLF)SPL is involved in visuospatial and integrative audiovisual functions. Furthermore, the MdLF may have clinical implications in neurodegenerative disorders such as primary progressive aphasia, frontotemporal dementia, posterior cortical atrophy, corticobulbar degeneration and Alzheimer's disease as well as attention-deficit/hyperactivity disorder and schizophrenia.


Diffusion Tensor Imaging/methods , Nerve Fibers, Myelinated/ultrastructure , Parietal Lobe/anatomy & histology , Temporal Lobe/anatomy & histology , Adolescent , Adult , Behavior/physiology , Female , Humans , Male , Middle Aged , Nerve Fibers, Myelinated/physiology , Neural Pathways/anatomy & histology , Neural Pathways/physiology , Parietal Lobe/physiology , Temporal Lobe/physiology , Young Adult
17.
Schizophr Res ; 146(1-3): 301-7, 2013 May.
Article En | MEDLINE | ID: mdl-23522905

INTRODUCTION: There is converging evidence supporting hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis in schizophrenia spectrum disorders (SSD), such as schizotypal personality disorder (SPD), first-episode schizophrenia (FESZ) and chronic schizophrenia (CHSZ). Such an aberrant HPA activity might have volumetric consequences on the pituitary gland. However, previous magnetic resonance imaging (MRI) studies assessing pituitary volume (PV) in SSD are conflicting. The main objective of this study was to examine further PV in SSD. METHODS: PV were manually traced on structural MRIs in 137 subjects, including subjects with SPD (n = 40), FESZ (n = 15), CHSZ (n = 15), and HC (n = 67). We used an ANCOVA to test PV between groups and gender while controlling for inter-subject variability in age, years of education, socioeconomic status, and whole brain volume. RESULTS: Overall, women had larger PV than men, and within the male sample all SSD subjects had smaller PV than HC, statistically significant only for the SPD group. In addition, dose of medication, illness duration and age of onset were not associated with PV. CONCLUSION: Chronic untreated HPA hyperactivity might account for smaller PV in SPD subjects, whereas the absence of PV changes in FESZ and CHSZ patients might be related to the normalizing effects of antipsychotics on PV. SPD studies offer a way to examine HPA related alterations in SSD without the potential confounds of medication effects.


Hypothalamo-Hypophyseal System/pathology , Pineal Gland/pathology , Pituitary-Adrenal System/pathology , Schizophrenia/pathology , Schizotypal Personality Disorder/pathology , Adult , Analysis of Variance , Female , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Male , Middle Aged , Young Adult
18.
Brain Struct Funct ; 218(4): 951-68, 2013 Jul.
Article En | MEDLINE | ID: mdl-22782432

Based on high-resolution diffusion tensor magnetic resonance imaging (DTI) tractographic analyses in 39 healthy adult subjects, we derived patterns of connections and measures of volume and biophysical parameters, such as fractional anisotropy (FA) for the human middle longitudinal fascicle (MdLF). Compared to previous studies, we found that the cortical connections of the MdLF in humans appear to go beyond the superior temporal (STG) and angular (AG) gyri, extending to the temporal pole (TP), superior parietal lobule (SPL), supramarginal gyrus, precuneus and the occipital lobe (including the cuneus and lateral occipital areas). Importantly, the MdLF showed a striking lateralized pattern with predominant connections between the TP, STG and AG on the left and TP, STG and SPL on the right hemisphere. In light of the results of the present study, and of the known functional role of the cortical areas interconnected by the MdLF, we suggested that this fiber pathway might be related to language, high order auditory association, visuospatial and attention functions.


Neural Pathways/anatomy & histology , Parietal Lobe/anatomy & histology , Temporal Lobe/anatomy & histology , Adolescent , Adult , Anisotropy , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Female , Humans , Male , Middle Aged
19.
Schizophr Res ; 141(1): 35-9, 2012 Oct.
Article En | MEDLINE | ID: mdl-22863550

Individuals with 22q11.2 deletion syndrome (22q11.2DS) evince a 30% incidence of schizophrenia. We compared the white matter (WM) of 22q11.2DS patients without schizophrenia to a group of matched healthy controls using Tract-Based-Spatial-Statistics (TBSS). We found localized reduction of Fractional Anisotropy (FA) and Axial Diffusivity (AD; measure of axonal integrity) in WM underlying the left parietal lobe. No changes in Radial Diffusivity (RD; measure of myelin integrity) were observed. Of note, studies in chronic schizophrenia patients report reduced FA, no changes in AD, and increases in RD in WM. Our findings suggest different WM microstructural pathology in 22q11.2DS than in patients with schizophrenia.


Brain/pathology , DiGeorge Syndrome/pathology , Nerve Fibers, Myelinated/pathology , Adolescent , Adult , Anisotropy , Brain Mapping , Case-Control Studies , Diffusion Tensor Imaging , Female , Humans , Male , Pilot Projects , Psychiatric Status Rating Scales , Young Adult
20.
Brain Imaging Behav ; 6(2): 103-7, 2012 Jun.
Article En | MEDLINE | ID: mdl-22706729

Contemporary neuroimaging methods and research findings in mild traumatic brain injury (mTBI) are reviewed in this special issue. Topics covered include structural and functional neuroimaging techniques with a particular emphasis on the most contemporary research involving magnetic resonance imaging (MRI). Future research directions as well as applied applications of using neuroimaging techniques to define biomarkers of brain injury are covered.


Brain Diseases/diagnosis , Brain Diseases/etiology , Brain Injuries/complications , Brain Injuries/diagnosis , Neuroimaging/trends , Humans
...