Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36904447

RESUMEN

The purpose of the study is to develop and assess mucoadhesive in situ nasal gel formulations of loratadine and chlorpheniramine maleate to advance the bioavailability of the drug as compared to its conventional dosage forms. The influence of various permeation enhancers, such as EDTA (0.2% w/v), sodium taurocholate (0.5% w/v), oleic acid (5% w/v), and Pluronic F 127 (10% w/v), on the nasal absorption of loratadine and chlorpheniramine from in situ nasal gels containing different polymeric combinations, such as hydroxypropyl methylcellulose, Carbopol 934, sodium carboxymethylcellulose, and chitosan, is studied. Among these permeation enhancers, sodium taurocholate, Pluronic F127 and oleic acid produced a noticeable increase in the loratadine in situ nasal gel flux compared with in situ nasal gels without permeation enhancer. However, EDTA increased the flux slightly, and in most cases, the increase was insignificant. However, in the case of chlorpheniramine maleate in situ nasal gels, the permeation enhancer oleic acid only showed a noticeable increase in flux. Sodium taurocholate and oleic acid seems to be a better and efficient enhancer, enhancing the flux > 5-fold compared with in situ nasal gels without permeation enhancer in loratadine in situ nasal gels. Pluronic F127 also showed a better permeation, increasing the effect by >2-fold in loratadine in situ nasal gels. In chlorpheniramine maleate in situ nasal gels with EDTA, sodium taurocholate and Pluronic F127 were equally effective, enhancing chlorpheniramine maleate permeation. Oleic acid has a better effect as permeation enhancer in chlorpheniramine maleate in situ nasal gels and showed a maximum permeation enhancement of >2-fold.

2.
Res Pharm Sci ; 10(6): 466-76, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26779266

RESUMEN

The objective of the present work was to formulate and evaluate mucoadhesive in situ nasal gels of loratadine. This drug delivery system may overcome the first-pass metabolism and subsequently improve the bioavailability of the drug. A total of 16 formulations of in situ nasal gels were prepared using different polymeric ratios of hydroxypropyl methylcellulose (HPMC K-100) and xanthan gum. All formulations had a clear appearance in the sol form, with gelling temperature of the nasal gels ranging between 33.1 ± 0.43 and 34.8 ± 0.82 °C. The gelling time of all the formulations varied from 4.0 ± 0.21 to 11.3 ± 0.22 s; the drug content was >95%. The pH of the formulations ranged between 5.6 ± 0.004 and 6.0 ± 0.003, i.e. no mucosal irritation is expected as the pH was in the acceptable range. Mucoadhesive strength was adequate (3010.89 ± 1.21-6678.89 ± 0.45 dyne/cm(2)) to provide prolonged adhesion. In vitro drug release studies showed that the prepared formulations could release the drug for up to 10 h with all of them following Higuchi kinetics. The accelerated stability studies indicated that the gels were stable over the six months test period. The DSC and XRD analysis revealed that there was no drug-polymer interaction. From these findings it can be concluded that in situ nasal gels may be potential drug delivery systems for loratadine to overcome first-pass metabolism and thereby to improve the bioavailability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA