Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 110: 129844, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38851357

RESUMEN

Gram-negative bacteria pose a major challenge in antibiotic drug discovery because their cell envelope presents a permeability barrier that affords high intrinsic resistance to small-molecule drugs. The identification of correlations between chemical structure and Gram-negative permeability would thus enable development of predictive tools to facilitate antibiotic discovery. Toward this end, have advanced a library design paradigm in which various chemical scaffolds are functionalized at different regioisomeric positions using a uniform reagent set. This design enables decoupling of scaffold, regiochemistry, and substituent effects upon Gram-negative permeability of these molecules. Building upon our recent synthesis of a library of C2-substituted sulfamidoadenosines, we have now developed an efficient synthetic route to an analogous library of regioisomeric C8-substituted congeners. The C8 library samples a region of antibiotic-relevant chemical space that is similar to that addressed by the C2 library, but distinct from that sampled by a library of analogously substituted oxazolidinones. Selected molecules were tested for accumulation in Escherichia coli in a pilot analysis, setting the stage for full comparative evaluation of these libraries in the future.


Asunto(s)
Antibacterianos , Diseño de Fármacos , Escherichia coli , Bibliotecas de Moléculas Pequeñas , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Escherichia coli/efectos de los fármacos , Estructura Molecular , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad , Permeabilidad
2.
Bioorg Med Chem Lett ; 97: 129486, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37734424

RESUMEN

Antibiotic resistance is a major threat to public health, and Gram-negative bacteria pose a particular challenge due to their combination of a low permeability cell envelope and efflux pumps. Our limited understanding of the chemical rules for overcoming these barriers represents a major obstacle in antibacterial drug discovery. Several recent efforts to address this problem have involved screening compound libraries for accumulation in bacteria in order to understand the structural properties required for Gram-negative permeability. Toward this end, we used cheminformatic analysis to design a library of sulfamidoadenosines (AMSN) having diverse substituents at the adenine C2 position. An efficient synthetic route was developed with installation of a uniform cross-coupling reagent set using Sonogashira and Suzuki reactions of a C2-iodide. The potential utility of these compounds was demonstrated by pilot analysis of selected analogues for accumulation in Escherichia coli.


Asunto(s)
Antibacterianos , Bacterias Gramnegativas , Antibacterianos/química , Descubrimiento de Drogas , Escherichia coli , Permeabilidad/efectos de los fármacos , Adenosina/química , Adenosina/farmacología
4.
J Med Chem ; 65(20): 14144-14179, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36257060

RESUMEN

The clinical success of linezolid for treating Gram-positive infections paired with the high conservation of bacterial ribosomes predicts that if oxazolidinones were engineered to accumulate in Gram-negative bacteria, then this pharmacological class would find broad utility in eradicating infections. Here, we report an investigative study of a strategically designed library of oxazolidinones to determine the effects of molecular structure on accumulation and biological activity. Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa strains with varying degrees of compromise (in efflux and outer membrane) were used to identify motifs that hinder permeation across the outer membrane and/or enhance efflux susceptibility broadly and specifically between species. The results illustrate that small changes in molecular structure are enough to overcome the efflux and/or permeation issues of this scaffold. Three oxazolidinone analogues (3e, 8d, and 8o) were identified that exhibit activity against all three pathogens assessed, a biological profile not observed for linezolid.


Asunto(s)
Oxazolidinonas , Oxazolidinonas/farmacología , Oxazolidinonas/química , Linezolid/farmacología , Pruebas de Sensibilidad Microbiana , Antibacterianos/química , Bacterias Gramnegativas , Escherichia coli
5.
Nat Struct Mol Biol ; 24(7): 570-577, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28581512

RESUMEN

Clinical studies indicate that partial agonists of the G-protein-coupled, free fatty acid receptor 1 GPR40 enhance glucose-dependent insulin secretion and represent a potential mechanism for the treatment of type 2 diabetes mellitus. Full allosteric agonists (AgoPAMs) of GPR40 bind to a site distinct from partial agonists and can provide additional efficacy. We report the 3.2-Å crystal structure of human GPR40 (hGPR40) in complex with both the partial agonist MK-8666 and an AgoPAM, which exposes a novel lipid-facing AgoPAM-binding pocket outside the transmembrane helical bundle. Comparison with an additional 2.2-Å structure of the hGPR40-MK-8666 binary complex reveals an induced-fit conformational coupling between the partial agonist and AgoPAM binding sites, involving rearrangements of the transmembrane helices 4 and 5 (TM4 and TM5) and transition of the intracellular loop 2 (ICL2) into a short helix. These conformational changes likely prime GPR40 to a more active-like state and explain the binding cooperativity between these ligands.


Asunto(s)
Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Regulación Alostérica , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica
6.
J Chem Theory Comput ; 13(2): 863-869, 2017 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-28042965

RESUMEN

Traditionally, computing the binding affinities of proteins to even relatively small and rigid ligands by free-energy methods has been challenging due to large computational costs and significant errors. Here, we apply a new molecular simulation acceleration method called MELD (Modeling by Employing Limited Data) to study the binding of stapled α-helical peptides to the MDM2 and MDMX proteins. We employ free-energy-based molecular dynamics simulations (MELD-MD) to identify binding poses and calculate binding affinities. Even though stapled peptides are larger and more complex than most protein ligands, the MELD-MD simulations can identify relevant binding poses and compute relative binding affinities. MELD-MD appears to be a promising method for computing the binding properties of peptide ligands with proteins.


Asunto(s)
Simulación de Dinámica Molecular , Péptidos/química , Péptidos/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Proteínas Proto-Oncogénicas c-mdm2/química , Termodinámica
7.
J Comput Aided Mol Des ; 31(3): 255-266, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27878643

RESUMEN

On October 5, 1981, Fortune magazine published a cover article entitled the "Next Industrial Revolution: Designing Drugs by Computer at Merck". With a 40+ year investment, we have been in the drug design business longer than most. During its history, the Merck drug design group has had several names, but it has always been in the "design" business, with the ultimate goal to provide an actionable hypothesis that could be tested experimentally. Often the result was a small molecule but it could just as easily be a peptide, biologic, predictive model, reaction, process, etc. To this end, the concept of design is now front and center in all aspects of discovery, safety assessment and early clinical development. At present, the Merck design group includes computational chemistry, protein structure determination, and cheminformatics. By bringing these groups together under one umbrella, we were able to align activities and capabilities across multiple research sites and departments. This alignment from 2010 to 2016 resulted in an 80% expansion in the size of the department, reflecting the increase in impact due to a significant emphasis across the organization to "design first" along the entire drug discovery path from lead identification (LID) to first in human (FIH) dosing. One of the major advantages of this alignment has been the ability to access all of the data and create an adaptive approach to the overall LID to FIH pathway for any modality, significantly increasing the quality of candidates and their probability of success. In this perspective, we will discuss how we crafted a new strategy, defined the appropriate phenotype for group members, developed the right skillsets, and identified metrics for success in order to drive continuous improvement. We will not focus on the tactical implementation, only giving specific examples as appropriate.


Asunto(s)
Diseño Asistido por Computadora , Descubrimiento de Drogas/métodos , Industria Farmacéutica/métodos , Proteínas/química , Química Farmacéutica , Biología Computacional , Diseño de Fármacos , Industria Farmacéutica/tendencias , Humanos , Modelos Moleculares , Conformación Proteica , Investigación , Programas Informáticos
8.
Biochem Biophys Res Commun ; 403(2): 190-3, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-21056549

RESUMEN

The detection of low affinity interactions between proteins and ligands by biophysical methods is challenging. It is often necessary to use competition methods that are time consuming and require well characterized known binders. A mass spectrometry approach is presented for identifying low affinity protein-ligand binding which does not require direct detection of the parent protein-ligand complex but depends on characteristic changes observed in the protein mass spectrum. We observe that on titration of ligand there are characteristic 'charge-state shifts' which manifest as changes in the relative intensities of protein peaks that correlate with the degree of protein-ligand complex formation. We suggest that use of this phenomenon will be particularly suitable for the identification of low affinity complexes where the intensity of any complex ion would be close to noise.


Asunto(s)
Espectrometría de Masa por Ionización de Electrospray , Proteína 1A de Unión a Tacrolimus/química , ADN Recombinante/química , ADN Recombinante/genética , Humanos , Ligandos , Unión Proteica , Proteína 1A de Unión a Tacrolimus/genética
9.
Bioorg Med Chem Lett ; 13(10): 1691-4, 2003 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-12729643

RESUMEN

Novel, low molecular weight inhibitors of IMPDH have been discovered through the application of a validated virtual screening protocol. A series of 21 IMPDH inhibitors were used to validate the docking procedure. Application of this procedure to the selection of compounds for screening from an in-house database resulted in a 50-fold reduction in the size of the screening set (3425 to 74 compounds) and gave a hit-rate of 10% on biological evaluation.


Asunto(s)
Simulación por Computador , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/química , IMP Deshidrogenasa/antagonistas & inhibidores , Sitios de Unión , Humanos , Enlace de Hidrógeno , Concentración 50 Inhibidora , Modelos Moleculares , Peso Molecular , Relación Estructura-Actividad , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA