Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Biomater Sci Eng ; 10(1): 166-177, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37978912

RESUMEN

Cancer remains an issue on a global scale. It is estimated that nearly 10 million people succumbed to cancer worldwide in 2020. New treatment options are urgently needed. A promising approach is a conversion of tumor-promoting M2 tumor-associated macrophages (TAMs) as part of the tumor microenvironment to tumor-suppressive M1 TAMs by small interfering RNA (siRNA). In this work, we present a well-characterized polymeric nanocarrier system capable of targeting M2 TAMs by a ligand-receptor interaction. Therefore, we developed a blended PEI-based polymeric nanoparticle system conjugated with mannose, which is internalized after interaction with macrophage mannose receptors (MMRs), showing low cytotoxicity and negligible IL-6 activation. The PEI-PCL-PEI (5 kDa-5 kDa-5 kDa) and Man-PEG-PCL (2 kDa-2 kDa) blended siRNA delivery system was optimized for maximum targeting capability and efficient endosomal escape by evaluation of different polymer and N/P ratios. The nanoparticles were formulated by surface acoustic wave-assisted microfluidics, achieving a size of ∼80 nm and a zeta potential of approximately +10 mV. Special attention was given to the endosomal escape as the so-called bottleneck of RNA drug delivery. To estimate the endosomal escape capability of the nanocarrier system, we developed a prediction method by evaluating the particle stability via the inflection temperature. Our predictions were then verified in an in vitro setting by applying confocal microscopy. For cellular experiments, however, human THP-1 cells were polarized to M2 macrophages by cytokine treatment and validated through MMR expression. To show the efficiency of the nanoparticle system, GAPDH and IκBα knockdown was performed in the presence or absence of an MMR blocking excess of mannan. Cellular uptake, GAPDH knockdown, and NF-κB western blot confirmed efficient mannose targeting. Herein, we presented a well-characterized nanoparticle delivery system and a promising approach for targeting M2 macrophages by a mannose-MMR interaction.


Asunto(s)
Neoplasias , Polímeros de Estímulo Receptivo , Humanos , Polímeros de Estímulo Receptivo/metabolismo , ARN Interferente Pequeño/genética , Manosa/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Polímeros/metabolismo , Neoplasias/tratamiento farmacológico
2.
Nanoscale Adv ; 5(15): 3914-3923, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37496619

RESUMEN

Microfluidic droplets are an important tool for studying and mimicking biological systems, e.g., to examine with high throughput the interaction of biomolecular components and the functionality of natural cells, or to develop basic principles for the engineering of artificial cells. Of particular importance is the approach to generate a biomimetic membrane by supramolecular self-assembly of nanoparticle components dissolved in the aqueous phase of the droplets at the inner water/oil interface, which can serve both to mechanically reinforce the droplets and as an interaction surface for cells and other components. While this interfacial assembly driven by electrostatic interaction of surfactants is quite well developed for water/mineral oil (W/MO) systems, no approaches have yet been described to exploit this principle for water/fluorocarbon oil (W/FO) emulsion droplets. Since W/FO systems exhibit not only better compartmentalization but also gas solubility properties, which is particularly crucial for live cell encapsulation and cultivation, we report here the investigation of charged fluorosurfactants for the self-assembly of DNA-modified silica nanoparticles (SiNP-DNA) at the interface of microfluidic W/FO emulsions. To this end, an efficient multicomponent Ugi reaction was used to synthesize the novel fluorosurfactant M4SURF to study the segregation and accumulation of negatively charged SiNP-DNA at the inner interface of microfluidic droplets. Comparative measurements were performed with the negatively charged fluorosurfactant KRYTOX, which can also induce SiNP-DNA segregation in the presence of cations. The segregation dynamics is characterized and preliminary results of cell encapsulation in the SiNP-DNA functionalized droplets are shown.

3.
Chemphyschem ; 21(10): 1070-1078, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32142187

RESUMEN

Dispersed negatively charged silica nanoparticles segregate inside microfluidic water-in-oil (W/O) droplets that are coated with a positively charged lipid shell. We report a methodology for the quantitative analysis of this self-assembly process. By using real-time fluorescence microscopy and automated analysis of the recorded images, kinetic data are obtained that characterize the electrostatically-driven self-assembly. We demonstrate that the segregation rates can be controlled by the installment of functional moieties on the nanoparticle's surface, such as nucleic acid and protein molecules. We anticipate that our method enables the quantitative and systematic investigation of the segregation of (bio)functionalized nanoparticles in microfluidic droplets. This could lead to complex supramolecular architectures on the inner surface of micrometer-sized hollow spheres, which might be used, for example, as cell containers for applications in the life sciences.


Asunto(s)
Ácidos Grasos Monoinsaturados/química , Técnicas Analíticas Microfluídicas , Aceite Mineral/química , Nanopartículas/química , Compuestos de Amonio Cuaternario/química , Dióxido de Silicio/química , Agua/química , Aminas/química , Animales , Bovinos , ADN/química , Cinética , Tamaño de la Partícula , Albúmina Sérica Bovina/química , Propiedades de Superficie
4.
Angew Chem Int Ed Engl ; 58(48): 17269-17272, 2019 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-31625665

RESUMEN

Although DNA nanotechnology has developed into a highly innovative and lively field of research at the interface between chemistry, materials science, and biotechnology, there is still a great need for methodological approaches for bridging the size regime of DNA nanostructures with that of micrometer- and millimeter-sized units for practical applications. We report on novel hierarchically structured composite materials from silica nanoparticles and DNA polymers that can be obtained by self-assembly through the clamped hybridization chain reaction. The nanocomposite materials can be assembled into thin layers within microfluidically generated water-in-oil droplets to produce mechanically stabilized hollow spheres with uniform size distributions at high throughput rates. The fact that cells can be encapsulated in these microcontainers suggests that our concept not only contributes to the further development of supramolecular bottom-up manufacturing, but can also be exploited for applications in the life sciences.


Asunto(s)
ADN/química , Microesferas , Nanocompuestos/química , Dióxido de Silicio/química , Hibridación Genética , Nanotecnología , Tamaño de la Partícula , Polimerizacion , Porosidad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA