Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 10(14): 6382-6392, 2018 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-29561055

RESUMEN

We combined synchrotron small angle X-ray scattering, X-ray fluorescence and extended X-ray absorption fine structure spectroscopy to probe the structure of chemically synthesized CoPt3 nanoparticles (NPs) after ligand removal via the commonly accepted solvent/nonsolvent approach. We showed that the improved catalytic activity of extensively purified NPs could not be explained only in terms of a "cleaner" surface. We found that extensive surface purification results in the substantial leaching of the Co atoms from the chemically synthesized CoPt3 NPs transforming them into CoPt3/Pt core/shell structures with an unexpectedly thick (∼0.5 nm) Pt shell. We indicated that the improved catalytic activity of extensively purified NPs in octyne hydrogenation reaction can be explained by the formation of CoPt3/Pt core/shell structures. Also, we demonstrated that drastic compositional and structural transformation of water transferred CoPt3 NPs was rather a result of extensive removal of native ligands via a solvent/nonsolvent approach than leaching of cobalt atoms in aqueous media. We expect that these findings can be relevant to other transition metal based multicomponent NPs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA