Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Biosensors (Basel) ; 14(5)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38785692

This study presents a biosensor fabricated based on integrated passive device (IPD) technology to measure microbial growth on solid media in real-time. Yeast (Pichia pastoris, strain GS115) is used as a model organism to demonstrate biosensor performance. The biosensor comprises an interdigital capacitor in the center with a helical inductive structure surrounding it. Additionally, 12 air bridges are added to the capacitor to increase the strength of the electric field radiated by the biosensor at the same height. Feasibility is verified by using a capacitive biosensor, and the change in capacitance values during the capacitance detection process with the growth of yeast indicates that the growth of yeast can induce changes in electrical parameters. The proposed IPD-based biosensor is used to measure yeast drop-added on a 3 mm medium for 100 h at an operating frequency of 1.84 GHz. The resonant amplitude of the biosensor varies continuously from 24 to 72 h due to the change in colony height during vertical growth of the yeast, with a maximum change of 0.21 dB. The overall measurement results also fit well with the Gompertz curve. The change in resonant amplitude between 24 and 72 h is then analyzed and reveals a linear relationship with time with a coefficient of determination of 0.9844, indicating that the biosensor is suitable for monitoring yeast growth. Thus, the proposed biosensor is proved to have potential in the field of microbial proliferation detection.


Biosensing Techniques , Yeasts/growth & development
2.
Front Bioeng Biotechnol ; 12: 1398189, 2024.
Article En | MEDLINE | ID: mdl-38803847

Cytotoxicity assays are crucial for assessing the efficacy of drugs in killing cancer cells and determining their potential therapeutic value. Measurement of the effect of drug concentration, which is an influence factor on cytotoxicity, is of great importance. This paper proposes a cytotoxicity assay using microwave sensors in an end-point approach based on the detection of the number of live cells for the first time. In contrast to optical methods like fluorescent labeling, this research uses a resonator-type microwave biosensor to evaluate the effects of drug concentrations on cytotoxicity by monitoring electrical parameter changes due to varying cell densities. Initially, the feasibility of treating cells with ultrapure water for cell counting by a microwave biosensor is confirmed. Subsequently, inhibition curves generated by both the CCK-8 method and the new microwave biosensor for various drug concentrations were compared and found to be congruent. This agreement supports the potential of microwave-based methods to quantify cell growth inhibition by drug concentrations.

3.
Biosensors (Basel) ; 14(4)2024 Apr 07.
Article En | MEDLINE | ID: mdl-38667173

Since different quantities of white blood cells (WBCs) in solution possess an adaptive osmotic pressure of cells, the WBCs themselves and in solution have similar concentrations, resulting in them having similar dielectric properties. Therefore, a microwave sensor could have difficulty in sensing the quantity variation when WBCs are in solution. This paper presents a highly sensitive, linear permittivity-inspired microwave biosensor for WBCs, counting through the evaporation method. Such a measurement method is proposed to record measurements after the cell solution is dripped onto the chip and is completely evaporated naturally. The proposed biosensor consists of an air-bridged asymmetric differential inductor and a centrally located circular fork-finger capacitor fabricated on a GaAs substrate using integrated passive fabrication technology. It is optimized to feature a larger sensitive area and improved Q-factor, which increases the effective area of interaction between cells and the electromagnetic field and facilitates the detection of their changes in number. The sensing relies on the dielectric properties of the cells and the change in the dielectric constant for different concentrations, and the change in resonance properties, which mainly represents the frequency shift, corresponds to the macroscopic change in the concentration of the cells. The microwave biosensors are used to measure biological samples with concentrations ranging from 0.25 × 106 to 8 × 106 cells per mL in a temperature (26.00 ± 0.40 °C) and humidity (54.40 ± 3.90 RH%) environment. The measurement results show a high sensitivity of 25.06 Hz/cells·mL-1 with a highly linear response of r2 = 0.99748. In addition, a mathematical modeling of individual cells in suspension is performed to estimate the dielectric constant of individual cells and further explain the working mechanism of the proposed microwave biosensor.


Biosensing Techniques , Humans , Leukocyte Count , Leukocytes/cytology , Microwaves
4.
Virol Sin ; 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38636706

The pseudorabies virus (PRV) is identified as a double-helical DNA virus responsible for causing Aujeszky's disease, which results in considerable economic impacts globally. The enzyme tryptophanyl-tRNA synthetase 2 (WARS2), a mitochondrial protein involved in protein synthesis, is recognized for its broad expression and vital role in the translation process. The findings of our study showed an increase in both mRNA and protein levels of WARS2 following PRV infection in both cell cultures and animal models. Suppressing WARS2 expression via RNA interference in PK-15 â€‹cells led to a reduction in PRV infection rates, whereas enhancing WARS2 expression resulted in increased infection rates. Furthermore, the activation of WARS2 in response to PRV was found to be reliant on the cGAS/STING/TBK1/IRF3 signaling pathway and the interferon-alpha receptor-1, highlighting its regulation via the type I interferon signaling pathway. Further analysis revealed that reducing WARS2 levels hindered PRV's ability to promote protein and lipid synthesis. Our research provides novel evidence that WARS2 facilitates PRV infection through its management of protein and lipid levels, presenting new avenues for developing preventative and therapeutic measures against PRV infections.

5.
Clin Med Insights Oncol ; 17: 11795549231201122, 2023.
Article En | MEDLINE | ID: mdl-37869472

Background: The early detection of clinically significant prostate cancer (csPCa) through the integration of multidimensional parameters presents a promising avenue for improving survival outcomes for this fatal disease. This study aimed to assess the contribution of prostate transition zone (TZ) to predictive models based on the prostate health index (PHI), with the goal of enhancing early detection of csPCa in the prostate-specific antigen (PSA) gray zone. Methods: In this observational cross-sectional study, a total of 177 PSA gray zone patients (total prostate-specific antigen [tPSA] level ranging from 4.0 to 10.0 ng/mL) were recruited and received PHI detections from August 2020 to March 2022. Prostatic morphologies especially the TZ morphological parameters were measured by transrectal ultrasound (TRUS). Results: Univariable logistic regression indicated prostatic morphological parameters including total prostate volume (PV) indexes and transitional zone volume indexes were all associated with csPCa (P < .05), while the multivariable analysis demonstrated that C-reactive protein (CRP), PHI, PHI density (PHID), and PHI transition zone density (PHI-TZD) were the 4 independent risk factors. The receiver-operating characteristic (ROC) curve analysis suggested that integrated predictive models (PHID, PHI-TZD) yield area under the curves (AUCs) of 0.9135 and 0.9105 in csPCa prediction, which shows a relatively satisfactory predictive capability compared with other predictors. Moreover, the PHI-TZD outperformed PHID by avoiding 30 patients' unnecessary biopsies while maintaining 74.36% specificity at a sensitivity of 90%. Decision-curve analysis (DCA) confirmed the comparable performance of the multivariable full-risk prediction models, without the inclusion of the net benefit, thereby highlighting the superior diagnostic efficacy of PHID and PHI-TZD in comparison with other diagnostic models, in both univariable and multivariable models. Conclusion: Our data confirmed the value of prostate TZ morphological parameters and suggested a significant advantage for the TZ-adjusted PHI predictive model (PHI-TZD) compared with PHI and PHID in the early detection of gray zone csPCa under specific conditions.

6.
Front Surg ; 9: 897716, 2022.
Article En | MEDLINE | ID: mdl-35910480

Background: The neutrophil to lymphocyte ratio (NLR) has been reported as an indicator for poor prognosis in many cancers including esophageal cancer. However, the relationship between the NLR and postoperative complications after esophageal cancer resection remains unclear. At present, enhanced recovery after surgery (ERAS) lacks inclusion criteria. The aim of this study is to determine whether the preoperative NLR (preNLR) can predict complications after esophageal cancer resection, which could represent the criteria for ERAS. Methods: This was a retrospective study on 171 patients who underwent esophagectomy at Hospital between November 2020 and November 2021(68 patients from Changhai Hospital, 65 patients from Shanghai General Hospital and 38 patients from Affiliated Hospital of Qingdao University). Univariate and multivariate logistic regression analyses were performed to demonstrate that the preNLR could predict complications after esophagectomy. Results: A preNLR cutoff value of 2.30 was identified as having the greatest ability to predict complications with a sensitivity of 76% and specificity of 65%. Moreover, the Chi-squared test results showed that the preNLR was significantly associated with complications (x2 = 13.641, p < 0.001), and multivariate logistic regression analysis showed that body mass index (BMI), p stage and preNLR were independent variables associated with the development of postoperative complications (p < 0.05). Conclusion: The preNLR can predict complications after esophagectomy, and these predicted complications can represent the criteria for recruiting patients for ERAS.

7.
Mol Ther Oncolytics ; 21: 171-182, 2021 Jun 25.
Article En | MEDLINE | ID: mdl-33997273

The present study aimed to define the tumor-suppressive role of microRNA-499 (miR-499) in lung cancer cells and its underlying mechanism. First, qRT-PCR analysis revealed poor expression of miR-499 in clinical samples and cell lines of lung cancer. Next, we performed loss- and gain-of-function experiments for the expression of miR-499 in lung cancer cells exposed to irradiation (IR) to determine the effect of miR-499 expression on cell viability and apoptosis as well as tumor growth. Results showed that overexpression of miR-499 inhibited cell viability, enhanced the radiosensitivity of lung cancer cells, and promoted cell apoptosis under IR. Furthermore, CK2α was verified to be a target of miR-499, and miR-499 was identified to repress p65 phosphorylation by downregulating CK2α expression, which ultimately diminished the survival rate of lung cancer cells under IR. Collectively, the key findings of the study illustrate the tumor-inhibiting function of miR-499 and confirmed that miR-499-mediated CK2α inhibition and altered p65 phosphorylation enhances the sensitivity of lung cancer cells to IR.

8.
Carcinogenesis ; 42(5): 762-771, 2021 05 28.
Article En | MEDLINE | ID: mdl-33758932

We examined the effect of microRNA-320b (miR-320b) on tumor growth and angiogenesis in lung cancer and also determined its downstream molecular mechanisms. Lung cancer tissues and adjacent non-cancerous tissues were collected from 66 patients with lung cancer. miR-320b expression was experimentally determined to be expressed at low level in cancer tissues. The results of gain-of-function experiments suggested that miR-320b overexpression suppressed cancer cell invasion, tube formation, tumor volume and angiogenesis in xenografted nude mice. Hepatocyte nuclear factor 4 gamma (HNF4G) was identified as a target of miR-320b based on in silico analysis. Dual-luciferase reporter gene assays further identified the binding relationship between HNF4G and miR-320b. Lung cancer tissues exhibited increased expression of HNF4G and insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). Meanwhile, HNF4G knockdown suppressed IGF2BP2 expression, thereby repressing cancer cell invasion and tube formation. Furthermore, IGF2BP2 modified m6A to increase the expression of thymidine kinase 1 (TK1), thus promoting angiogenesis. In nude mice, restoration of TK1 reversed the suppressive effect of miR-320b overexpression on tumor growth rate and CD31 expression. In conclusion, miR-320b suppresses lung cancer growth and angiogenesis by inhibiting HNF4G, IGF2BP2 and TK1.


Hepatocyte Nuclear Factor 4/genetics , Lung Neoplasms/genetics , MicroRNAs/genetics , Neovascularization, Pathologic/genetics , RNA-Binding Proteins/genetics , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Heterografts , Humans , Lung Neoplasms/pathology , Male , Mice , Neovascularization, Pathologic/pathology , Signal Transduction/genetics
9.
Endokrynol Pol ; 72(3): 217-225, 2021.
Article En | MEDLINE | ID: mdl-33619712

INTRODUCTION: We designed 5 convolutional neural network (CNN) models and ensemble models to differentiate malignant and benign thyroid nodules on CT, and compared the diagnostic performance of CNN models with that of radiologists. MATERIAL AND METHODS: We retrospectively included CT images of 880 patients with 986 thyroid nodules confirmed by surgical pathology between July 2017 and December 2019. Two radiologists retrospectively diagnosed benign and malignant thyroid nodules on CT images in a test set. Five CNNs (ResNet50, DenseNet121, DenseNet169, SE-ResNeXt50, and Xception) were trained-validated and tested using 788 and 198 thyroid nodule CT images, respectively. Then, we selected the 3 models with the best diagnostic performance on the test set for the model ensemble. We then compared the diagnostic performance of 2 radiologists with 5 CNN models and the integrated model. RESULTS: Of the 986 thyroid nodules, 541 were malignant, and 445 were benign. The area under the curves (AUCs) for diagnosing thyroid malignancy was 0.587-0.754 for 2 radiologists. The AUCs for diagnosing thyroid malignancy for the 5 CNN models and ensemble model was 0.901-0.947. There were significant differences in AUC between the radiologists' models and the CNN models (p < 0.05). The ensemble model had the highest AUC value. CONCLUSIONS: Five CNN models and an ensemble model performed better than radiologists in distinguishing malignant thyroid nodules from benign nodules on CT. The diagnostic performance of the ensemble model improved and showed good potential.


Deep Learning , Thyroid Nodule , Humans , Lung Neoplasms , Neural Networks, Computer , Radiologists , Retrospective Studies , Thyroid Neoplasms/diagnostic imaging , Thyroid Nodule/diagnostic imaging , Tomography, X-Ray Computed
10.
Am J Transl Res ; 13(1): 168-182, 2021.
Article En | MEDLINE | ID: mdl-33527016

Lung cancer has high incidence and mortality rates, in which lung squamous cell carcinoma (LUSC) is a primary type of non-small cell lung carcinoma (NSCLC). The aim of our study was to discover long non-coding RNAs (lncRNAs) associated with diagnose and prognosis for LUSC. RNA sequencing data obtained from LUSC samples were extracted from The Cancer Genome Atlas database (TCGA). Two prognosis-associated lncRNAs (including SFTA1P and LINC00519) were selected from LUSC samples, and the expression levels were also verified to be associated abnormal in LUSC clinical samples. Our findings demonstrate that lncRNAs SFTA1P and LINC00519 exert important functions in human LUSC and may serve as new targets for LUSC diagnosis and therapy.

11.
Oncol Lett ; 15(6): 8796-8804, 2018 Jun.
Article En | MEDLINE | ID: mdl-29805619

Testes-specific protease 50 (TSP50) is normally expressed in the testes and is overexpressed in various types of human cancers, including breast cancer, colorectal carcinoma and laryngocarcinoma. However, little has been reported on the association between TSP50 and non-small cell lung cancer (NSCLC). The present study aimed to detect TSP50 expression in 198 strict follow-up cases of paired NSCLC and 15 cases of normal lung parenchymal specimens using immunohistochemical staining. The expression levels of TSP50 were then correlated with the clinicopathological factors of NSCLC to assess its potential diagnostic and prognostic value. The relationship between TSP50 expression and the clinicopathological parameters of NSCLC was evaluated using χ2 and Fisher's exact tests. Survival rates for the overall population (n=198) were calculated using the Kaplan-Meier method, and univariate and multivariate analyses were performed using the Cox's proportional hazards regression model. P<0.05 was considered to indicate a statistically significant difference. The expression of TSP50 was significantly increased in NSCLC tissue compared with in adjacent non-tumor or normal lung parenchymal tissue (P<0.001). A significant association was revealed between high expression levels of TSP50 and clinicopathological characteristics including tumor differentiation (P=0.012), late tumor status (P=0.004) and late tumor node metastasis stage (P=0.026), as well as a reduced disease free survival (P=0.009) and overall survival rate (P=0.002) in all patients with NSCLC. Multivariate analyses demonstrated that high TSP50 expression in tumor tissues was significantly associated with a shorter disease-free survival rate [hazard ratio (HR) =1.590, 95% confidence interval (CI): 1.035-2.441], and with a shorter overall survival rate (HR=1.814; 95% CI: 1.156-2.846). In conclusion, the present data demonstrated that increased TSP50 protein expression may be a potential predictor of early recurrence and poor prognosis in NSCLC, and that TSP50 expression levels possess the potential to be used as a biomarker and therapeutic target for the treatment of patients with NSCLC.

12.
Oncol Rep ; 35(6): 3409-18, 2016 Jun.
Article En | MEDLINE | ID: mdl-27109614

Non-small cell lung cancer (NSCLC) as the most frequently diagnosed lethal cancer remains the major cause of overall cancer-related death worldwide. Testes-specific protease 50 (TSP50) has been proved as a critical biomarker in various cancers, and we previously reported that TSP50 protein expression is overexpressed in clinical resected NSCLC tumor tissues and related to poor prognosis in NSCLC patients. Hence, the present study was designed to further investigate the potential oncogenesis mechanism of TSP50 in NSCLC cells. Real-time quantitative PCR, immunohistochemical assay and western blot analysis were used to analyze the TSP50 mRNA and protein expression in 20 NSCLC cases, and TSP50 expression was observed to have high levels in the NSCLC specimens and paired metastatic lymph node tissues when compared to the levels in corresponding normal lung tissues and normal lymph nodes. In the experiments in NSCLC cell lines, lentiviral short hairpin RNA (shRNA) delivery system was applied to knock down TSP50 in 95D cells, and the following investigations revealed that downregulation of TSP50 expression markedly reduced cell proliferation, colony formation and migration ability in vitro. Furthermore, the inhibition of TSP50 induced G0/G1-phase arrest and decreased expression levels of cell cycle relative markers CDK4, CDK6, and CyclinD1 and increased expression of p21 and p53 in 95D cells. In conclusion, this study indicates that TSP50 plays a significant role in NSCLC cell proliferation and may act as a novel oncogene in the development and progression of NSCLC, offering a potential cancer therapeutic target for the treatment of NSCLC.


Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle Checkpoints , Lung Neoplasms/pathology , Serine Endopeptidases/physiology , Cell Line, Tumor , Cell Proliferation , Humans , Lentivirus/genetics , Lymphatic Metastasis , RNA, Small Interfering/genetics , Serine Endopeptidases/genetics , Tumor Suppressor Protein p53/physiology
13.
Anat Rec (Hoboken) ; 296(8): 1161-8, 2013 Aug.
Article En | MEDLINE | ID: mdl-23740668

The purpose of this study is to investigate the mRNA and protein expression levels of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in pressure ulcers, and to elucidate the molecular mechanism by which VEGF and bFGF are involved in pressure ulcer formation. A rat model of ischemia-reperfusion pressure ulcer was established by magnetic disk circulating compression method. Real-time fluorescence quantitative PCR and Western blot assays were conducted to detect the mRNA and protein expression of VEGF and bFGF in the tissues of rat I-, II-, and III-degree pressure ulcers, the surrounding tissues, and normal skin. Our study confirmed that the mRNA and protein expression levels of VEGF and bFGF in the tissues of rat I-degree pressure ulcer were significantly higher than that in the II- and III-degree pressure ulcer tissues (P < 0.05). The expression of VEGF and bFGF in the tissues surrounding I- and II-degree pressure ulcers were higher than the rats with normal skin. The expression of VEGF and bFGF in the tissues of rat III-degree pressure ulcer was lower than that in the surrounding tissues and normal skin (P < 0.05). There was a significant positive correlation between change in the VEGF and bFGF. The results showed that with an increase in the degree of pressure ulcers, the expression of VEGF and bFGF in pressure ulcers tissue are decreased. This leads to a reduction in angiogenesis and may be a crucial factor in the formation of pressure ulcers.


Angiogenic Proteins/physiology , Fibroblast Growth Factor 2/physiology , Pressure Ulcer/physiopathology , Signal Transduction/physiology , Up-Regulation/physiology , Vascular Endothelial Growth Factor A/physiology , Angiogenic Proteins/genetics , Animals , Disease Models, Animal , Fibroblast Growth Factor 2/genetics , Magnetics , Male , Neovascularization, Pathologic/physiopathology , Pressure Ulcer/pathology , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Skin/metabolism , Skin/pathology , Vascular Endothelial Growth Factor A/genetics
14.
J Epidemiol Community Health ; 66(7): e23, 2012 Jul.
Article En | MEDLINE | ID: mdl-21880645

BACKGROUND: This longitudinal study builds on the cross-sectional work of Karim et al and examines the influence of welfare state regime on population health with a particular focus on East Asian welfare states (eg, Hong Kong, Japan, Korea, Singapore and Taiwan). METHODS: Data were extracted from the Organisation of Economic Co-operation and Development Data Set, World Development Indicators and Asian Development Bank's key indicators from 1980 to 2006. Infant mortalities and life expectancy were used as health-outcome varables. Thirty-one countries were categorised into six types of welfare regimes: Scandinavian, Anglo-Saxon, Bismarckian, Southern, Eastern European and East Asian. Mixed models were applied to analyse the data with repeated measurements. RESULTS: In keeping with Karim et al, Scandinavian and Eastern European welfare states have lower and higher infant mortalities respectively compared with East Asian welfare states. Eastern European welfare states had a lower life expectancy than East Asian welfare states. Most welfare states had a higher social, health and education expenditure, and higher densities of physicians than East Asian welfare states. CONCLUSION: East Asian welfare states did not have worse health than most welfare states. Future studies should continue to incorporate East Asian countries in the typology of welfare regimes that include more social, economic, political and healthcare system characteristic variables to provide insight on the mechanism by which welfare-state regimes influence population health.


Government , Infant Mortality , Life Expectancy/trends , Social Welfare , Aged , Asia, Eastern/epidemiology , Female , Humans , Infant, Newborn , Longitudinal Studies , Male , Social Class
...