Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Front Immunol ; 15: 1358960, 2024.
Article En | MEDLINE | ID: mdl-38655256

Introduction: Early detection of the virus in the environment or in infected pigs is a critical step to stop African swine fever virus (ASFV) transmission. The p22 protein encoded by ASFV KP177R gene has been shown to have no effect on viral replication and virulence and can serve as a molecular marker for distinguishing field virus strains from future candidate KP177R deletion vaccine strains. Methods: This study established an ASFV detection assay specific for the highly conserved ASFV KP177R gene based on recombinase polymerase amplification (RPA) and the CRISPR/Cas12 reaction system. The KP177R gene served as the initial template for the RPA reaction to generate amplicons, which were recognized by guide RNA to activate the trans-cleavage activity of Cas12a protein, thereby leading to non-specific cleavage of single-stranded DNA as well as corresponding color reaction. The viral detection in this assay could be determined by visualizing the results of fluorescence or lateral flow dipstick (LFD) biotin blotting for color development, and was respectively referred to as fluorescein-labeled RPA-CRISPR/Cas12a and biotin-labeled LFD RPA-CRISPR/Cas12a. The clinical samples were simultaneously subjected to the aforementioned assay, while real-time quantitative PCR (RT-qPCR) was employed as a control for determining the diagnostic concordance rate between both assays. Results: The results showed that fluorescein- and biotin-labeled LFD KP177R RPA-CRISPR/Cas12a assays specifically detected ASFV, did not cross-react with other swine pathogens including PCV2, PEDV, PDCoV, and PRV. The detection assay established in this study had a limit of detection (LOD) of 6.8 copies/µL, and both assays were completed in 30 min. The KP177R RPA-CRISPR/Cas12a assay demonstrated a diagnostic coincidence rate of 100% and a kappa value of 1.000 (p < 0.001), with six out of ten clinical samples testing positive for ASFV using both KP177R RPA-CRISPR/Cas12a and RT-qPCR, while four samples tested negative in both assays. Discussion: The rapid, sensitive and visual detection assay for ASFV developed in this study is suitable for field application in swine farms, particularly for future differentiation of field virus strains from candidate KP177R gene-deleted ASFV vaccines, which may be a valuable screening tool for ASF eradication.


African Swine Fever Virus , African Swine Fever , Bacterial Proteins , CRISPR-Cas Systems , African Swine Fever Virus/genetics , Animals , Swine , African Swine Fever/virology , African Swine Fever/diagnosis , CRISPR-Associated Proteins/genetics , Recombinases/genetics , Recombinases/metabolism , Viral Proteins/genetics , Nucleic Acid Amplification Techniques/methods , Endodeoxyribonucleases/genetics , Sensitivity and Specificity
2.
Toxicol Appl Pharmacol ; 447: 116087, 2022 07 15.
Article En | MEDLINE | ID: mdl-35643124

N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) is a common alkylating agent, which can be experimentally used as a chemical mutagen and carcinogen, extensively existing in the environment. Folic acid (FA), part of the B group of vitamins, plays an important role in defending against inflammation and reducing the risk of cancers. Nevertheless, there is little research on the protective effects of FA against MNNG-induced esophageal inflammation, and its underlying mechanism still remains elusive. Hence, in the present study, we exposed MNNG to SD rats and esophageal cells to establish the esophageal inflammation models. Our research aims to explore the protective roles of FA against esophageal inflammation induced by MNNG via NF-κB pathway by CCK-8, EdU, RT-qPCR, ELISA, H&E, Western blot. Our results revealed that MNNG decreased the viability of esophageal cells, which was restored under FA intervention. Besides, FA relieved the elevation of IL-6, IL-8 and TNF-α in MNNG-induced esophageal inflammation. Moreover, histopathological analysis showed that epithelial spinous cells proliferated in mucous layer, and inflammatory cells were locally infiltrated in the submucosa after MNNG exposure, while the pathological damage of esophageal tissues was gradually alleviated along with increasing FA doses. And Western blot results demonstrated that FA could relieve the rise of phosphorylated IκBα (p-IκBα) and phosphorylated p65 (p-p65) proteins induced by MNNG. Therefore, it is reasonable to believe that FA has a crucial role in preventing MNNG-induced esophageal inflammation through inhibiting the NF-κB pathway, thereby down-regulating the expressions of IL-6, IL-8 and TNF-α.


Methylnitronitrosoguanidine , NF-kappa B , Animals , Folic Acid/pharmacology , Folic Acid/therapeutic use , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/prevention & control , Interleukin-6 , Interleukin-8 , Methylnitronitrosoguanidine/toxicity , NF-KappaB Inhibitor alpha , NF-kappa B/metabolism , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha
3.
Front Pharmacol ; 12: 621194, 2021.
Article En | MEDLINE | ID: mdl-33995020

Objective: Velvet antler (VA; cornu cervi pantotrichum), a well-known traditional Chinese medicine, has been shown to exert cardioprotective effects. The purpose of this study was to investigate the effect of VA on heart failure (HF) caused by ischemia-reperfusion, and explore its possible mechanism from the regulation of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2 alpha (SERCA2a). Methods: A rat model of HF was established by ligating the left anterior descending coronary artery of male Sprague-Dawley rats (n = 88). One week after surgery, VA (200, 400, or 800 mg/[kg day-1]) or enalapril (1 mg/[kg day-1]) was administered daily for the next 4 weeks. Heart function was detected by echocardiography and histopathological analysis. The serum BNP level was measured by ELISA, and the expression of SERCA2a, PLB, PLB-Ser16, and PKA was determined by western blotting. SERCA2a and PLB mRNA levels were determined by real-time quantitative PCR. Results: Compared with the sham group, cardiac function in the HF group, including the serum BNP level, heart mass index, myocardial collagen deposition, and left ventricular ejection fraction, was markedly reduced; however, these changes could be reversed by VA treatment. In addition, VA (200 mg/[kg·d-1]) inhibited the decrease of SERCA2a and PLB mRNA levels and SERCA2a, PLB, PLB-Ser16, and PKA protein expression and restored the activity of SERCA2a and PKA. Enalapril affected only PLB protein expression. Conclusion: VA can improve myocardial fibrosis and ventricular remodeling in rats, thereby helping to restore cardiac function. The underlying mechanism may be related to the upregulation of the expression and activation of PKA and PLB and the restoration of the expression and activity of SERCA2a.

4.
Trials ; 21(1): 12, 2020 Jan 06.
Article En | MEDLINE | ID: mdl-31907056

BACKGROUND: Worldwide, hypertension is an important public health challenge because of its high prevalence and the concomitant risks of cardiovascular disease. It induces half of the coronary heart disease and approximately two-thirds of the cerebrovascular disease burden. Vascular endothelial dysfunction has important roles in the pathophysiology of essential hypertension. Types I and II hypertension can be treated with sang-qi granules (SQG), a Chinese herbal formula. Several experimental studies on animals have shown that SQG can lower blood pressure and myocardial fibrosis by suppressing inflammatory responses. However, no standard clinical trial has confirmed this. Whether SQG can improve endothelial cell function is unknown. METHODS/DESIGN: In this randomized double-blind double-simulation controlled trial, 300 patients with stage I or II hypertension will be recruited and randomly allocated in a 1:1:1 ratio to group A (treatment with SQG and placebo instead of Losartan), group B (treatment with Losartan and placebo instead of SQG), and group C (treatment with SQG and Losartan). In this study, 10 g of SQG (or its placebo) will be administrated twice a day and 50 mg of Losartan (or its placebo) will be administrated once in the morning. The primary endpoint is the drug efficiency for each of the three groups. The secondary endpoints are the change in average systolic and diastolic blood pressure during the day and the night, the change in the rate at which blood pressure drops at night, assessment of target organ damage (heart rate variability, ankle-brachial pressure index, and pulse wave velocity), assessment of any improvement in symptoms (Hypertension Symptom Scale, syndrome integral scale in traditional Chinese medicine, Pittsburgh Sleep Quality Index Scale, Self-Rating Anxiety Scale, Self-Rating Depression Scale, and the 36-Item Short Form Health Survey), blood lipids, serum indicators of vascular function (changes in serum levels of ET-1, TXA2, NO, and PGI2), and safety indicators. DISCUSSION: This study aims to provide clinical evidence on the efficacy and safety of SQG in the treatment of hypertension. Moreover, the possible mechanism by which SQG may lower blood pressure will be explored by observing the protective effect of SQG on vascular endothelial function, as well as its effect on related clinical symptoms, risk factors, and the target organs of hypertension. TRIAL REGISTRATION: Chinese Clinical Trials Registry, ChiCTR1800016427. Registered on 1 June 2018.


Antihypertensive Agents/administration & dosage , Drugs, Chinese Herbal/administration & dosage , Endothelium, Vascular/drug effects , Hypertension/drug therapy , Losartan/administration & dosage , Antihypertensive Agents/adverse effects , Blood Pressure/drug effects , Blood Pressure Determination , China , Double-Blind Method , Drug Administration Schedule , Drugs, Chinese Herbal/adverse effects , Endothelium, Vascular/physiopathology , Humans , Hypertension/diagnosis , Hypertension/physiopathology , Losartan/adverse effects , Placebos/administration & dosage , Placebos/adverse effects , Randomized Controlled Trials as Topic , Treatment Outcome
5.
Oxid Med Cell Longev ; 2020: 3158108, 2020.
Article En | MEDLINE | ID: mdl-33456666

BACKGROUND/AIM: Danhong injection (DHI) is a Chinese patent drug used for relieving cardiovascular diseases. Recent studies have suggested that DNA methylation plays a pivotal role in the maintenance of cardiac fibrosis (CF) in cardiovascular diseases. This study was aimed at identifying the effect and the underlying mechanism of DHI on CF, especially the DNA methylation. METHODS: A CF murine model was established by thoracic aortic constriction (TAC). A 28-day daily treatment with or without DHI via intraperitoneal injection was carried out immediately following TAC surgery. The changes in cardiac function, pathology, and fibrosis following TAC were measured by echocardiography and immunostaining. We used methyl-seq analysis to assess the DNA methylation changes in whole genes and identified the methylation changes of two Ras signaling-related genes in TAC mice, including Ras protein activator like-1 (Rasal1) and Ras-association domain family 1 (Rassf1). Next, the methylation status and expression levels of Rasal1 and Rassf1 genes were consolidated by bisulfite sequencing, quantitative reverse transcription polymerase chain reaction (RT-qPCR), and Western blotting, respectively. To determine the underlying molecular mechanism, the expressions of DNA methyltransferases (DNMTs), Tet methylcytosine dioxygenase 3 (TET3), fibrosis-related genes, and the activity of Ras/ERK were measured by RT-qPCR and Western blotting. RESULTS: DHI treatment alleviated CF and significantly improved cardiac function on day 28 of TAC. The methyl-seq analysis identified 42,606 differential methylated sites (DMSs), including 19,618 hypermethylated DMSs and 22,988 hypomethylated DMSs between TAC and sham-operated mice. The enrichment analysis of these DMSs suggested that the methylated regulation of Ras signal transduction and focal adhesion-related genes would be involved in the TAC-induced CF development. The results of bisulfite sequencing revealed that the TAC-induced methylation affected the CpG site in both of Rasal1 and Rassf1 genes, and DHI treatment remarkably downregulated the promoter methylation of Rasal1 and Rassf1 in CF hearts. Furthermore, DHI treatment upregulated the expressions of Rasal1 and Rassf1, inhibited the hyperactivity of Ras/ERK, and decreased the expressions of fibrosis-related genes. Notably, we found that DHI treatment markedly downregulated the expression of DNMT3B in CF hearts, while it did not affect the expressions of DNMT1, DNMT3A, and TET3. CONCLUSION: Aberrant DNA methylation of Rasal1 and Rassf1 genes was involved in the CF development. DHI treatment alleviated CF, prevented the hypermethylation of Rasal1 and Rassf1, and downregulated DNMT3B expression in CF hearts.


DNA Methylation/genetics , Drugs, Chinese Herbal/pharmacology , GTPase-Activating Proteins/genetics , Myocardium/pathology , Tumor Suppressor Proteins/genetics , Animals , Aorta, Thoracic/pathology , Cardiomegaly/genetics , Cardiomegaly/physiopathology , Constriction, Pathologic , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation/drug effects , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/therapeutic use , Fibrosis , GTPase-Activating Proteins/metabolism , Gene Expression Regulation/drug effects , Injections , Male , Mice, Inbred C57BL , Molecular Sequence Annotation , Signal Transduction , Tumor Suppressor Proteins/metabolism , DNA Methyltransferase 3B
...