Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 7(1): 8592, 2017 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-28819271

RESUMEN

The magnetic flux gate sensors based on Faraday's Law of Induction are widely used for DC or extremely low frequency magnetic field detection. Recently, as the fast development of multiferroics and magnetoelectric (ME) composite materials, a new technology based on ME coupling effect is emerging for potential devices application. Here, we report a magnetoelectric flux gate sensor (MEFGS) for weak DC magnetic field detection for the first time, which works on a similar magnetic flux gate principle, but based on ME coupling effect. The proposed MEFGS has a shuttle-shaped configuration made of amorphous FeBSi alloy (Metglas) serving as both magnetic and magnetostrictive cores for producing a closed-loop high-frequency magnetic flux and also a longitudinal vibration, and one pair of embedded piezoelectric PMN-PT fibers ([011]-oriented Pb(Mg,Nb)O3-PbTiO3 single crystal) serving as ME flux gate in a differential mode for detecting magnetic anomaly. In this way, the relative change in output signal of the MEFGS under an applied DC magnetic anomaly of 1 nT was greatly enhanced by a factor of 4 to 5 in comparison with the previous reports. The proposed ME flux gate shows a great potential for magnetic anomaly detections, such as magnetic navigation, magnetic based medical diagnosis, etc.

2.
Rev Sci Instrum ; 88(6): 065002, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28668000

RESUMEN

Micro/nanomaterials and devices have attracted great interest in recent years because of their extensive application prospects in almost all kinds of fields. However, the manipulations of the material at the micro/nanoscale, such as the separation or transfer of a micro/nano-object in the process of assembling micro/nanodevices, are quite difficult. In this paper, we present a micromachined micro-gripper made of photoresist material (SU-8) and driven by piezoelectric Pb(Mg,Nb)O3-PbTiO3 single crystal pieces. In order to keep two grasping jaws of the micro-gripper operating in the same plane at the micro/nanometer scale, a fine circular flexure hinge was fabricated for elastically connecting them together. After introducing the interface effect, the relationship between the opening stroke of two jaws and the applied voltage was developed and then confirmed by finite element simulation. The micro-gripper was finally installed on a six degree of freedom stage for performing a pick-up, release, and transfer manipulation of a 2 µm ZnO micro-fiber. The presented piezoelectric micro-gripper shows a great potential for the precise manipulation of a single piece of micro/nanomaterial for micro/nanodevices' assembling.

3.
Adv Mater ; 29(19)2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28256753

RESUMEN

Bulk-magnetoelectric (ME) composites consisting of various piezoelectric and piezomagnetic materials with (3-0), (3-1), (2-2), and (2-1) connectivity are proposed in a bid to realize strong ME coupling for next-generation electronic-device applications. Here, 1D (1-1) connectivity ME composites consisting of a [011]-oriented Pb(Mg,Nb)O3 -PbTiO3 (PMN-PT) single-crystal fiber laminated with laser-treated amorphous FeBSi alloy (Metglas) and operating in L-T mode (longitudinally magnetized and transversely poled) are reported, which exhibit an enhanced resonant ME coupling coefficient of ≈7000 V cm-1  Oe-1 , which is nearly seven times higher than the best result published previously, and also a superhigh magnetic sensitivity of 1.35 × 10-13 T (directly detected) at resonance at room temperature, representing a significant advance in bulk magnetoelectric materials. The theoretical analyses based on magnetic-circuit and equivalent-circuit methods show that the enhancement in ME coupling can be attributed to the reduction in resonance loss of laser-treated Metglas alloy due to nanocrystallization and the strong magnetic-flux-concentration effect in (1-1) configuration composites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA