Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 253: 119056, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38704005

RESUMEN

Ship ballast water promoting the long-range migration of antibiotic resistance genes (ARGs) has raised a great concern. This study attempted to reveal ARGs profile in ballast water and decipher their hosts and potential risk using metagenomic approaches. In total, 710 subtypes across 26 ARG types were identified among the ballast water samples from 13 ships of 11 countries and regions, and multidrug resistance genes were the most dominant ARGs. The composition of ARGs were obviously different across samples, and only 5% of the ARG subtypes were shared by all samples. Procrustes analysis showed the bacterial community contributed more than the mobile genetic elements (MGEs) in shaping the antibiotic resistome. Further, 79 metagenome-assembled genomes (46 genera belong to four phyla) were identified as ARG hosts, with predominantly affiliated with the Proteobacteria. Notably, potential human pathogens (Alcaligenes, Mycolicibacterium, Rhodococcus and Pseudomonas) were also recognized as the ARG hosts. Above 30% of the ARGs hosts contained the MGEs simultaneously, supporting a pronounced horizontal gene transfer capability. A total of 43 subtypes (six percent of overall ARGs) of ARGs were assessed with high-risk, of which 23 subtypes belonged to risk Rank I (including rsmA, ugd, etc.) and 20 subtypes to the risk Rank II (including aac(6)-I, sul1, etc.). In addition, antibiotic resistance risk index indicated the risk of ARGs in ballast water from choke points of maritime trade routes was significantly higher than that from other regions. Overall, this study offers insights for risk evaluation and management of antibiotic resistance in ballast water.


Asunto(s)
Bacterias , Navíos , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/clasificación , Bacterias/aislamiento & purificación , Metagenómica , Microbiología del Agua , Antibacterianos/farmacología , Metagenoma , Farmacorresistencia Bacteriana/genética , Genes Bacterianos , Farmacorresistencia Microbiana/genética
2.
Opt Express ; 32(6): 8862-8876, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571133

RESUMEN

An LP11-mode output all-fiber laser was presented, utilizing long-period fiber gratings (LPFGs) and polarization-maintaining optical fiber (PMF). The LPFG was designed and fabricated, achieving a 90.56% efficiency in LP01 to LP11 mode conversion. Furthermore, the transmission stability of LP11-mode in the PMF was also explored, with the spatial mode overlap ratio exceeding 0.95. Ultimately, the high-power polarization-maintaining (PM) fiber laser, capable of the LP11 mode output, was constructed, with the output power of 600 W and the beam quality M2 of 2.84. During the process of welding a thick Al-plate, the LP11 fiber laser exhibits a notable 1.88 times greater depth of fusion compared to the commercial single-mode fiber laser, when operating at the laser welding head speed of 100 mm/s. For applications demanding non-circular symmetric high-order modes, this research holds substantial potential for widespread adoption within the field of industrial processing.

4.
J Transl Med ; 22(1): 58, 2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38221609

RESUMEN

BACKGROUND: Chimeric antigen receptor CAR-T cell therapies have ushered in a new era of treatment for specific blood cancers, offering unparalleled efficacy in cases of treatment resistance or relapse. However, the emergence of cytokine release syndrome (CRS) as a side effect poses a challenge to the widespread application of CAR-T cell therapies. Melatonin, a natural hormone produced by the pineal gland known for its antioxidant and anti-inflammatory properties, has been explored for its potential immunomodulatory effects. Despite this, its specific role in mitigating CAR-T cell-induced CRS remains poorly understood. METHODS: In this study, our aim was to investigate the potential of melatonin as an immunomodulatory agent in the context of CD19-targeting CAR-T cell therapy and its impact on associated side effects. Using a mouse model, we evaluated the effects of melatonin on CAR-T cell-induced CRS and overall survival. Additionally, we assessed whether melatonin administration had any detrimental effects on the antitumor efficacy and persistence of CD19 CAR-T cells. RESULTS: Our findings demonstrate that melatonin effectively mitigated the severity of CAR-T cell-induced CRS in the mouse model, leading to improved overall survival outcomes. Remarkably, melatonin administration did not compromise the antitumor effectiveness or persistence of CD19 CAR-T cells, indicating its compatibility with therapeutic goals. These results suggest melatonin's potential as an immunomodulatory compound to alleviate CRS without compromising the therapeutic benefits of CAR-T cell therapy. CONCLUSION: The study's outcomes shed light on melatonin's promise as a valuable addition to the existing treatment protocols for CAR-T cell therapies. By attenuating CAR-T cell-induced CRS while preserving the therapeutic impact of CAR-T cells, melatonin offers a potential strategy for optimizing and refining the safety and efficacy profile of CAR-T cell therapy. This research contributes to the evolving understanding of how to harness immunomodulatory agents to enhance the clinical application of innovative cancer treatments.


Asunto(s)
Síndrome de Liberación de Citoquinas , Inmunoterapia Adoptiva , Melatonina , Antígenos CD19 , Tratamiento Basado en Trasplante de Células y Tejidos , Síndrome de Liberación de Citoquinas/terapia , Factores Inmunológicos/farmacología , Inmunoterapia Adoptiva/efectos adversos , Melatonina/farmacología , Recurrencia Local de Neoplasia , Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos , Animales , Ratones
5.
Cell Rep ; 42(12): 113518, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38041812

RESUMEN

The dysfunction and clonal constriction of tumor-infiltrating CD8+ T cells are accompanied by alterations in cellular metabolism; however, how the cell-intrinsic metabolic pathway specifies intratumoral CD8+ T cell features remains elusive. Here, we show that cell-autonomous generation of nicotinamide adenine dinucleotide (NAD+) via the kynurenine pathway (KP) contributes to the maintenance of intratumoral CD8+ T cell metabolic and functional fitness. De novo NAD+ synthesis is involved in CD8+ T cell metabolism and antitumor function. KP-derived NAD+ promotes PTEN deacetylation, thereby facilitating PTEN degradation and preventing PTEN-dependent metabolic defects. Importantly, impaired cell-autonomous NAD+ synthesis limits CD8+ T cell responses in human colorectal cancer samples. Our results reveal that KP-derived NAD+ regulates the CD8+ T cell metabolic and functional state by restricting PTEN activity and suggest that modulation of de novo NAD+ synthesis could restore CD8+ T cell metabolic fitness and antitumor function.


Asunto(s)
Linfocitos T CD8-positivos , NAD , Humanos , NAD/metabolismo , Linfocitos T CD8-positivos/metabolismo , Quinurenina/metabolismo , Redes y Vías Metabólicas
6.
J Clin Invest ; 133(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37788092

RESUMEN

The functional integrity of Tregs is interwoven with cellular metabolism; however, the mechanisms governing Treg metabolic programs remain elusive. Here, we identified that the deubiquitinase USP47 inhibited c-Myc translation mediated by the RNA N6-methyladenosine (m6A) reader YTHDF1 to maintain Treg metabolic and functional homeostasis. USP47 positively correlated with the tumor-infiltrating Treg signature in samples from patients with colorectal cancer and gastric cancer. USP47 ablation compromised Treg homeostasis and function in vivo, resulting in the development of inflammatory disorders, and boosted antitumor immune responses. USP47 deficiency in Tregs triggered the accumulation of the c-Myc protein and in turn exacerbated hyperglycolysis. Mechanistically, USP47 prevented YTHDF1 ubiquitination to attenuate the association of YTHDF1 with translation initiation machinery, thereby decreasing m6A-based c-Myc translation efficiency. Our findings reveal that USP47 directs m6A-dependent metabolic programs to orchestrate Treg homeostasis and suggest novel approaches for selective immune modulation in cancer and autoimmune diseases by targeting of USP47.


Asunto(s)
Enfermedades Autoinmunes , Neoplasias , Humanos , Homeostasis , Linfocitos T Reguladores , Ubiquitinación
7.
Cell Death Differ ; 30(8): 2005-2016, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37474750

RESUMEN

Converting tumor-associated macrophages (TAMs) from the M2 to the M1 phenotype is considered an effective strategy for cancer therapy. TRAF3 is known to regulate NF-κB signaling. However, the role of TRAF3 in TAM polarization has not yet been completely elucidated. Here, we found that ablation of TRAF3 increased M1 markers, iNOS, FGR and SLC4A7, while down-regulated M2 markers, CD206, CD36 and ABCC3, expression levels in macrophages. Moreover, TRAF3 deficiency enhanced LPS-induced M1 and abolished IL-4-induced macrophage polarization. Next, quantitative ubiquitomics assays demonstrated that among the quantitative 7618 ubiquitination modification sites on 2598 proteins, ubiquitination modification of IL-4 responding proteins was the most prominently reduced according to enrichment analysis. STAT6, a key factor of IL-4 responding protein, K450 and K129 residue ubiquitination levels were dramatically decreased in TRAF3-deficient macrophages. Ubiquitination assay and luciferase assay demonstrated that TRAF3 promotes STAT6 ubiquitination and transcriptional activity. Site mutation analysis revealed STAT6 K450 site ubiquitination played a vital role in TRAF3-mediated STAT6 activation. Finally, B16 melanoma mouse model demonstrated that myeloid TRAF3 deficiency suppressed tumor growth and lung metastasis in vivo. Taken together, TRAF3 plays a vital role in M2 polarization via regulating STAT6 K450 ubiquitination in macrophages.


Asunto(s)
Interleucina-4 , Factor 3 Asociado a Receptor de TNF , Ratones , Animales , Interleucina-4/farmacología , Interleucina-4/metabolismo , Factor 3 Asociado a Receptor de TNF/genética , Factor 3 Asociado a Receptor de TNF/metabolismo , Factor 3 Asociado a Receptor de TNF/farmacología , Macrófagos/metabolismo , Transducción de Señal , Fenotipo , Activación de Macrófagos
8.
J Hazard Mater ; 459: 132096, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37480611

RESUMEN

Microplastic (MP) biofilms are hotspots of antibiotic resistance genes (ARGs) in landfill environment. MP biofilms in landfill leachate coexist with heavy metals and metallic nanoparticles (NPs) that considered to be the selective agents of ARGs. However, the effects of these selective pressures on ARGs in MP biofilms and their differences in MP-surrounding leachate have not been well understood. Herein, the changes of ARG abundances in MP biofilms and corresponding leachate under zinc oxide (ZnO) NPs and zinc ion (Zn2+) pressures were comparatively analyzed. The presence of ZnO NPs and Zn2+ promoted the enrichment of ARGs in MP biofilms, and the enrichment was more pronounced in ZnO NPs groups. ZnO NPs and especially Zn2+ mainly decreased the abundances of ARGs in leachate. The increase of integron abundances and reactive oxygen species production in MP biofilms implied the enhanced potential for horizontal transfer of ARGs under ZnO NPs and Zn2+ pressures. Meanwhile, the co-occurrence pattern between ARGs and bacterial genera in MP biofilms with more diverse potential ARG hosts was more complex than in leachate, and the enrichment of ARG-hosting bacteria in MP biofilms under ZnO NPs and Zn2+ pressures supported the enrichment of ARGs.


Asunto(s)
Nanopartículas del Metal , Contaminantes Químicos del Agua , Óxido de Zinc , Óxido de Zinc/farmacología , Zinc , Microplásticos , Plásticos , Antibacterianos/farmacología , Biopelículas , Farmacorresistencia Microbiana/genética , Iones
9.
Scand J Immunol ; 98(4): e13309, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37389566

RESUMEN

T and B lymphocytes are crucial players in cellular and humoral immune responses. The development, activation and differentiation of T and B lymphocytes are regulated by the best characterized PI3K-PI (3,4,5) P3-AKT phosphoinositide signalling pathway. As a branch of the phosphoinositide signalling pathway, the lipid phosphatase INPP4B inhibits AKT activation through degrading the phosphoinositide signalling messenger PI (3,4) P2. However, the role of Inpp4b in T and B lymphocytes remains elusive. Here, we reported that Inpp4b was highly expressed in human and murine T- and B-1 lymphocytes. Despite its higher expression in T lymphocytes, neither T cell development and homeostasis nor in vitro T cell activation and CD4+ T cell differentiation were altered upon loss of Inpp4b. Interestingly, combined direct phenotype analysis of Inpp4b conventional knockout mice and adoptive transfer studies revealed that ablation of Inpp4b intrinsically reduced peritoneal B-1 cells rather B-2 cells. Moreover, Inpp4b deficiency led to impaired thymus independent (TI) and thymus dependent (TD) antigens-induced antibody production. Further in vitro analysis revealed that CD40-mediated B cell proliferation was impaired upon ablation of Inpp4b. Our findings reveal that Inpp4b is required in regulating B-1 cell numbers and B cell-mediated antibody production.


Asunto(s)
Subgrupos de Linfocitos B , Proteínas Proto-Oncogénicas c-akt , Humanos , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Formación de Anticuerpos , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Antígenos , Fosfatidilinositoles , Recuento de Células
10.
Bioresour Technol ; 376: 128926, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36940870

RESUMEN

High-solids anaerobic co-digestion (HS-AcoD) of food waste (FW) and other organic wastes is an effective option to improve the biogas production and system stability compared to mono-digestion. However, the clean and sustainable HS-AcoD strategy for FW and associated microbial functional traits have not been well explored. Here, HS-AcoD of restaurant food waste (RFW), household food waste (HFW) and rice straw (RS) were performed. Results showed that the maximum synergy index (SI) of 1.28 were achieved when the volatile solids ratio of RFW, HFW and RS was 0.45:0.45:0.1. HS-AcoD alleviated the acidification process by regulating metabolism associated with hydrolysis and volatile fatty acids formation. The synergistic relationship between syntrophic bacteria and Methanothrix sp., and the enhanced metabolic capacity associated with the acetotrophic and hydrogenotrophic pathways dominated by Methanothrix sp., provided a further explanation of the synergistic mechanism. These findings advance the knowledge about microbial mechanisms underlying the synergistic effect of HS-AcoD.


Asunto(s)
Oryza , Eliminación de Residuos , Eliminación de Residuos/métodos , Anaerobiosis , Alimentos , Restaurantes , Reactores Biológicos , Metano , Biocombustibles , Aguas del Alcantarillado
11.
Opt Express ; 30(23): 41884-41897, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36366653

RESUMEN

Computational imaging enables spatial information retrieval of objects with the use of single-pixel detectors. By combining measurements and computational methods, it is possible to reconstruct images in a variety of situations that are challenging or impossible with traditional multi-pixel cameras. However, these systems typically suffer from significant loss of imaging quality due to various noises when the measurement conditions are single-photon detecting, undersampling and complicated. Here, we provide an unsupervised deep learning (UnDL) based anti-noise approach to deal with this problem. The proposed method does not require any clean experimental data to pre-train, so it effectively alleviates the difficulty of model training (especially for the biomedical imaging scene which is difficult to obtain training ground truth inherently). Our results show that an UnDL based imaging approach outperforms conventional single-pixel computational imaging methods considerably in reconstructing the target image against noise. Moreover, the well-trained model is generalized to image a real biological sample and can accurately image 64 × 64 resolution objects with a high speed of 20 fps at 5% sampling ratio. This method can be used in various solvers for general computational imaging and is expected to effectively suppress noises for high-quality biomedical imaging in generalizable complicated environments.


Asunto(s)
Aprendizaje Profundo , Diagnóstico por Imagen , Fotones , Procesamiento de Imagen Asistido por Computador/métodos
12.
Vaccines (Basel) ; 10(9)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36146529

RESUMEN

Immunotherapy has played a significant role in the treatment of a variety of hematological and solid tumors, but its application in ovarian cancer (OC) remains unclear. This study aimed to identify immune subtypes of OC and delineate an immune landscape for selecting suitable patients for immunotherapy, thereby providing potent therapeutic targets for immunotherapy drug development. Three immune subtypes (IS1-IS3) with distinctive molecular, cellular, and clinical characteristics were identified from the TCGA and GSE32062 cohorts. Compared to IS1, IS3 has a better prognosis and exhibits an immunological "hot". IS3, in contrast, exhibits an immunological "cold" and has a worse prognosis in OC patients. Moreover, gene mutations, immune modulators, CA125, CA199, and HE4 expression, along with sensitivity either to immunotherapy or chemotherapy, were significantly different among the three immune subtypes. The OC immune landscape was highly heterogeneous between individual patients. Poor prognosis was correlated with low expression of the hub genes CD2, CD3D, and CD3E, which could act not only as biomarkers for predicting prognosis, but also as potential immunotherapy targets. Our study elucidates the immunotyping and molecular characteristics of the immune microenvironment in OC, which could provide an effective immunotherapy stratification method for optimally selecting patients, and also has clinical significance for the development of new immunotherapy as well as rational combination strategies for the treatment of OC patients.

13.
Environ Pollut ; 310: 119859, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35944782

RESUMEN

The environmental risks of microplastics (MPs) have raised an increasing concern. However, the effects of MPs in anaerobic digestion (AD) systems of waste activated sludge (WAS), especially on the fate of antibiotic resistance genes (ARGs), have not been clearly understood. Herein, the variation and interaction of digestion performance, microbial communities and ARGs during AD process of WAS in the presence of polyethylene (PE) MPs with two sizes, PE MPs-180µm and PE MPs-1mm, were investigated. The results showed that the presence of PE MPs, especially PE MPs-1mm, led to the increased hydrolysis of soluble polysaccharides and proteins and the accumulation of volatile fatty acids. The methane production decreased by 6.1% and 13.8% in the presence of PE MPs-180µm and PE MPs-1mm, respectively. Together with this process, hydrolytic bacteria and acidogens were enriched, and methanogens participating in acetoclastic methanogenesis were reduced. Meanwhile, ARGs were enriched obviously by the presence of PE MPs, the abundances of which in PE MPs-180µm and PE MPs-1mm groups were 1.2-3.0 times and 1.5-4.0 times higher than that in the control by the end of AD. That was associated with different co-occurrence patterns between ARGs and bacterial taxa and the enrichment of ARG-hosting bacteria caused by the presence of PE MPs. Together these results suggested the adverse effects of PE MPs on performance and ARGs removal during AD process of WAS through inducing the changes of microbial populations.


Asunto(s)
Microbiota , Aguas del Alcantarillado , Anaerobiosis , Antibacterianos , Bacterias , Digestión , Farmacorresistencia Microbiana , Genes Bacterianos , Microplásticos , Plásticos , Polietileno
14.
J Pers Med ; 12(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35743699

RESUMEN

Estrogen and progesterone are the major determinants of the occurrence and development of endometrial cancer (EC), which is one of the most common gynecological cancers worldwide. Our purpose was to develop a novel estrogen/progesterone-related gene signature to better predict the prognosis of EC and help discover effective therapeutic strategies. We downloaded the clinical and RNA-seq data of 397 EC patients from The Cancer Genome Atlas (TCGA) database. The "limma" R package was used to screen for estrogen/progesterone-related differentially expressed genes (DEGs) between EC and normal tissues. Univariate and multivariate Cox proportional hazards regression analyses were applied to identify these DEGs that were associated with prognosis; then, a novel estrogen/progesterone-related prognostic signature comprising CDC25B, GNG3, ITIH3, PRXL2A and SDHB was established. The Kaplan-Meier (KM) survival analysis showed that the low-risk group identified by this signature had significantly longer overall survival (OS) than the high-risk group; the receiver operating characteristic (ROC) and risk distribution curves suggested this signature was an accurate predictor independent of risk factors. A nomogram incorporating the signature risk score and stage was constructed, and the calibration plot suggested it could accurately predict the survival rate. Compared with normal tissues, tumor tissues had increased mRNA levels of GNG3 and PRXL2A and a reduced mRNA level of ITIH3. The knockdown of PRXL2A and GNG3 significantly inhibited the proliferation and colony formation of Ishikawa and AN3CA cells, while the inhibition of PRXL2A expression suppressed xenograft growth. In this study, five estrogen/progesterone-related genes were identified and incorporated into a novel signature, which provided a new classification tool for improved risk assessment and potential molecular targets for EC therapies.

16.
J Hazard Mater ; 430: 128432, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35158247

RESUMEN

The prevalence of antibiotic resistance, as well as microplastics (MPs) as vectors for antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) has attracting growing attention. However, the fate of ARB/ARGs on MPs treated by chlorination and Fenton oxidation were poorly understood. Herein, the removal and regrowth of ARGs/ARB on MPs and in MPs-surrounding landfill leachate (an important reservoir of MPs and ARGs) after chlorination and Fenton oxidation were comparatively analyzed. Target ARGs on MPs were reduced obviously less than that in leachate, with the largest percentages reduction of 34.0-46.3% vs. 54.3-77.6% after chlorination and 92.1-97.3% vs. > 99.9% after Fenton oxidation, and similar removal patterns were observed for ARB. Moreover, a considerable regrowth of ARGs/ARB in leachate were found after 48 h of storage at the end of chlorination (5, 10, 20 and 50 mg/L), and a greater regrowth of ARGs and ARB occurred on MPs with up to 17 and 139 fold, respectively. In contrast, Fenton oxidation achieved a reduced regrowth of target ARGs/ARB. These findings indicated that the removal of ARGs/ARB on MPs were more difficult than that in leachate, and ARGs/ARB in leachate and especially on MPs exhibited a considerable potential for rapid regrowth after chlorination.


Asunto(s)
Microplásticos , Plásticos , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Antibacterianos/farmacología , Bacterias/genética , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Halogenación , Aguas Residuales
17.
Sci Total Environ ; 816: 152721, 2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-34974026

RESUMEN

Various microorganisms are transported worldwide via the water and sediments inside ship ballast tanks. Nevertheless, the ecological functions and assembly processes of bacterial communities in ballast water and sediments remain poorly understood. Here, we investigated the bacterial composition, community assembly processes, and putative functions through analyses of 70 ballast water and sediment samples obtained from various ships. The results showed that the ballast sediments contained a higher diversity of bacterial communities, whereas the ballast water was characterized by the dominance of Proteobacteria. Both the composition and potential function structures of bacterial communities were clearly different between the ballast water and sediment samples. The ballast water exhibited an abundance of microorganisms that involved in sulfur oxidation, whereas the bacterial species associated with nitrogen metabolism were abundant in the sediments. Co-occurrence network analysis revealed that the communities in ballast sediment samples possessed more complex network structures with higher modularity and positive associations among bacterial populations. Stochastic processes, especially the dispersal limitation process played the most important influence in the assembly of the communities in ballast water. Meanwhile, the bacterial communities in the ballast sediments were primarily governed by the homogeneous selection of determinacy. The results from this study will help us understand the ecological processes related to the bacterial communities in the ballast tanks and provide a foundation for the management of ballast water and sediments.


Asunto(s)
Sedimentos Geológicos , Navíos , Bacterias , Agua
18.
Neurochem Res ; 47(4): 1049-1059, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35037164

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease characterized by excessive deposition of ß amyloid (Aß), hyperphosphorylation of tau protein, and neuronal cell death. Recent studies have shown that myelin cell damage, which leads to cognitive dysfunction, occurs before AD-related pathological changes. Here, we examine the effect of icariin (ICA), a prenylated flavonol glycoside, in improving cognitive function in AD model mice. ICA has been reported to exhibit cardiovascular protective functions and antiaging effects. In this study, we used 3 × Tg-AD mice as an AD model. The Morris water maze and Y maze tests were performed to assess the learning and memory of the mice. Immunofluorescence analysis of Aß1-42 deposition and myelin basic protein (MBP) expression in the mouse hippocampus was performed. Tau protein phosphorylation and MBP protein expression in the hippocampus were further analyzed by Western blotting. Myelin damage in the mouse optic nerve was evaluated by electron microscopy, and LFB staining was performed to assess myelin morphology in the mouse corpus callosum. MBP, Mpp5, and Egr2 transcript levels were quantified by qPCR. We observed that ICA treatment improved the learning and memory of 3 × Tg-AD mice and reduced Aß deposition and tau protein phosphorylation in the hippocampus. Moreover, this treatment protocol increased myelin-related gene expression and reduced myelin damage.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Flavonoides , Hipocampo/metabolismo , Aprendizaje por Laberinto , Ratones , Ratones Transgénicos , Vaina de Mielina/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteínas tau/metabolismo
19.
Cell Death Dis ; 13(1): 93, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35091545

RESUMEN

TRK-fused gene (TFG) is known to be involved in protein secretion and plays essential roles in an antiviral innate immune response. However, its function in LPS-induced inflammation and pyroptotic cell death is still unknown. Here, we reported that TFG promotes the stabilization of Unc-51 like autophagy activating kinase (ULK1) and participates in LPS plus nigericin (Ng) induced pyroptotic cell death. Our results showed that TFG-deficient THP-1 macrophages exhibit higher mitochondrial ROS production. LPS/Ng stimulation triggers a much higher level of ROS and induces pyroptotic cell death. ULK1 undergoes a rapid turnover in TFG-deficient THP-1 cells. TFG forms complex with an E3 ligase, tumor necrosis factor receptor-associated factor 3 (TRAF3), and stabilizes ULK1 via disturbing ULK1-TRAF3 interaction. Knockdown of TFG facilitates the interaction of ULK1 with TRAF3 and subsequent K48-linked ULK1 ubiquitination and proteasome degradation. Rescue of ULK1 expression blocks LPS/Ng-induced cell death in TFG-deficient THP-1 macrophages. Taken together, TFG plays an essential role in LPS/Ng-induced pyroptotic cell death via regulating K48-linked ULK1 ubiquitination in macrophages.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Piroptosis , Factor 3 Asociado a Receptor de TNF , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Nigericina , Especies Reactivas de Oxígeno/metabolismo , Factor 3 Asociado a Receptor de TNF/genética , Factor 3 Asociado a Receptor de TNF/metabolismo , Ubiquitinación
20.
Food Res Int ; 149: 110673, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34600675

RESUMEN

To better understand the structure-function relationship of Gastrodia elata polysaccharides (PGEs), PGEs were extracted by ultrasound-assisted extraction method and the effects of extraction time on the structure and conformation of PGEs were evaluated by asymmetrical flow field-flow fractionation (AF4) coupled online with multiangle light scattering (MALS) and differential refractive index (dRI) detectors (AF4-MALS-dRI). Besides separation, AF4-MALS-dRI can provide more information about PGEs, such as size and molecular weight (Mw) distributions, apparent density, and conformation. The effects of PGEs on the proliferation, apoptosis, and cell cycle of MCF-7 cells were investigated. The cell activity assay indicated that the PGEs can inhibit the growth of MCF-7 cells by inducing late apoptosis. The results indicated that PGEs with a spherical conformation and compact structure seem to be beneficial to inducing MCF-7 cells late apoptosis. Moreover, results demonstrated that the information obtained by AF4-MALS-dRI is valuable for better understanding of the relationship of structure-activity of PGEs.


Asunto(s)
Fraccionamiento de Campo-Flujo , Gastrodia , Peso Molecular , Polisacáridos/farmacología , Refractometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...