Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 329
1.
Brain ; 2024 May 13.
Article En | MEDLINE | ID: mdl-38739753

Human brain organoids represent a remarkable platform for modeling neurological disorders and a promising brain repair approach. However, the effects of physical stimulation on their development and integration remain unclear. Here, we report that low-intensity ultrasound significantly increases neural progenitor cell proliferation and neuronal maturation in cortical organoids. Histological assays and single-cell gene expression analyses reveal that low-intensity ultrasound improves the neural development in cortical organoids. Following organoid grafts transplantation into the injured somatosensory cortices of adult mice, longitudinal electrophysiological recordings and histological assays reveal that ultrasound-treated organoid grafts undergo advanced maturation. They also exhibit enhanced pain-related gamma-band activity and more disseminated projections into the host brain than the untreated groups. Finally, low-intensity ultrasound ameliorates neuropathological deficits in a microcephaly brain organoid model. Hence, low-intensity ultrasound stimulation advances the development and integration of brain organoids, providing a strategy for treating neurodevelopmental disorders and repairing cortical damage.

2.
Thorax ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38702190

BACKGROUND: The aetiology of lung cancer among individuals who never smoked remains elusive, despite 15% of lung cancer cases in men and 53% in women worldwide being unrelated to smoking. Epigenetic alterations, particularly DNA methylation (DNAm) changes, have emerged as potential drivers. Yet, few prospective epigenome-wide association studies (EWAS), primarily focusing on peripheral blood DNAm with limited representation of never smokers, have been conducted. METHODS: We conducted a nested case-control study of 80 never-smoking incident lung cancer cases and 83 never-smoking controls within the Shanghai Women's Health Study and Shanghai Men's Health Study. DNAm was measured in prediagnostic oral rinse samples using Illumina MethylationEPIC array. Initially, we conducted an EWAS to identify differentially methylated positions (DMPs) associated with lung cancer in the discovery sample of 101 subjects. The top 50 DMPs were further evaluated in a replication sample of 62 subjects, and results were pooled using fixed-effect meta-analysis. RESULTS: Our study identified three DMPs significantly associated with lung cancer at the epigenome-wide significance level of p<8.22×10-8. These DMPs were identified as cg09198866 (MYH9; TXN2), cg01411366 (SLC9A10) and cg12787323. Furthermore, examination of the top 1000 DMPs indicated significant enrichment in epithelial regulatory regions and their involvement in small GTPase-mediated signal transduction pathways. Additionally, GrimAge acceleration was identified as a risk factor for lung cancer (OR=1.19 per year; 95% CI 1.06 to 1.34). CONCLUSIONS: While replication in a larger sample size is necessary, our findings suggest that DNAm patterns in prediagnostic oral rinse samples could provide novel insights into the underlying mechanisms of lung cancer in never smokers.

3.
Hum Mol Genet ; 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38676403

BACKGROUND: Genetic susceptibility to various chronic diseases has been shown to influence heart failure (HF) risk. However, the underlying biological pathways, particularly the role of leukocyte telomere length (LTL), are largely unknown. We investigated the impact of genetic susceptibility to chronic diseases and various traits on HF risk, and whether LTL mediates or modifies the pathways. METHODS: We conducted prospective cohort analyses on 404 883 European participants from the UK Biobank, including 9989 incident HF cases. Multivariable Cox regression was used to estimate associations between HF risk and 24 polygenic risk scores (PRSs) for various diseases or traits previously generated using a Bayesian approach. We assessed multiplicative interactions between the PRSs and LTL previously measured in the UK Biobank using quantitative PCR. Causal mediation analyses were conducted to estimate the proportion of the total effect of PRSs acting indirectly through LTL, an integrative marker of biological aging. RESULTS: We identified 9 PRSs associated with HF risk, including those for various cardiovascular diseases or traits, rheumatoid arthritis (P = 1.3E-04), and asthma (P = 1.8E-08). Additionally, longer LTL was strongly associated with decreased HF risk (P-trend = 1.7E-08). Notably, LTL strengthened the asthma-HF relationship significantly (P-interaction = 2.8E-03). However, LTL mediated only 1.13% (P < 0.001) of the total effect of the asthma PRS on HF risk. CONCLUSIONS: Our findings shed light onto the shared genetic susceptibility between HF risk, asthma, rheumatoid arthritis, and other traits. Longer LTL strengthened the genetic effect of asthma in the pathway to HF. These results support consideration of LTL and PRSs in HF risk prediction.

4.
bioRxiv ; 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38617360

APOBEC enzymes are part of the innate immunity and are responsible for restricting viruses and retroelements by deaminating cytosine residues1,2. Most solid tumors harbor different levels of somatic mutations attributed to the off-target activities of APOBEC3A (A3A) and/or APOBEC3B (A3B)3-6. However, how APOBEC3A/B enzymes shape the tumor evolution in the presence of exogenous mutagenic processes is largely unknown. Here, by combining deep whole-genome sequencing with multi-omics profiling of 309 lung cancers from smokers with detailed tobacco smoking information, we identify two subtypes defined by low (LAS) and high (HAS) APOBEC mutagenesis. LAS are enriched for A3B-like mutagenesis and KRAS mutations, whereas HAS for A3A-like mutagenesis and TP53 mutations. Unlike APOBEC3A, APOBEC3B expression is strongly associated with an upregulation of the base excision repair pathway. Hypermutation by unrepaired A3A and tobacco smoking mutagenesis combined with TP53-induced genomic instability can trigger senescence7, apoptosis8, and cell regeneration9, as indicated by high expression of pulmonary healing signaling pathway, stemness markers and distal cell-of-origin in HAS. The expected association of tobacco smoking variables (e.g., time to first cigarette) with genomic/epigenomic changes are not observed in HAS, a plausible consequence of frequent cell senescence or apoptosis. HAS have more neoantigens, slower clonal expansion, and older age at onset compared to LAS, particularly in heavy smokers, consistent with high proportions of newly generated, unmutated cells and frequent immuno-editing. These findings show how heterogeneity in mutational burden across co-occurring mutational processes and cell types contributes to tumor development, with important clinical implications.

5.
Genes (Basel) ; 15(3)2024 Mar 19.
Article En | MEDLINE | ID: mdl-38540434

Sheep horns are composed of bone and sheaths, and the BMPR1A gene is required for cartilage and osteogenic differentiation. Therefore, the BMPR1A gene may have a function related to the sheep horn, but its relationship with the sheep horn remains unclear. In this study, we first utilized RNA sequencing (RNA-seq) data to investigate the expression of the BMPR1A gene in different tissues and breeds of sheep. Second, whole-genome sequencing (WGS) data were used to explore the functional sites of the BMPR1A gene. Lastly, the allele-specific expression of the BMPR1A gene was explored. Our results indicate that BMPR1A gene expression is significantly higher in the normal horn groups than in the scurred groups. Importantly, this trend is consistent across several sheep breeds. Therefore, this finding suggests that the BMPR1A gene may be related to horn type. A total of 43 Single-Nucleotide Polymorphisms (SNPs) (F-statistics > 0.15) and 10 allele-specific expressions (ASEs) exhibited difference between the large and small horn populations. It is probable that these sites significantly impact the size of sheep horns. Compared to other polled species, we discovered ten amino acid sites that could influence horn presence. By combining RNA-seq and WGS functional loci results, we identified a functional site at position 40574836 on chromosome 25 that is both an SNP and exhibits allele-specific expression. In conclusion, we demonstrated that the BMPR1A gene is associated with horn type and identified some important functional sites which can be used as molecular markers in the breeding of sheep horns.


Osteogenesis , Polymorphism, Single Nucleotide , Sheep/genetics , Animals , Chromosome Mapping/methods , Phenotype , Chromosomes
6.
BJPsych Open ; 10(2): e47, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38362905

BACKGROUND: Previous pandemics have had negative effects on mental health, but there are few data on children and adolescents who were receiving ongoing psychiatric treatment. AIMS: To study changes in emotions and clinical state, and their predictors, during the COVID-19 pandemic in France. METHOD: We administered (by interview) the baseline Youth Self-Report version of the CoRonavIruS Health Impact Survey v0.3 (CRISIS, French translation) to 123 adolescent patients and the Parent/Caregiver version to evaluate 99 child patients before and during the first 'lockdown'. For 139 of these patients who received ongoing treatment in our centre, treating physicians retrospectively completed longitudinal global ratings for five time periods, masked to CRISIS ratings. RESULTS: The main outcome measure was the sum of eight mood state items, which formed a single factor in each age group. Overall, this score improved for each age group during the first lockdown. Clinician ratings modestly supported this result in patients without intellectual disability or autism spectrum disorder. Improvement of mood states was significantly associated with perceived improvement in family relationships in both age groups. CONCLUSIONS: Consistent with previous studies of clinical cohorts, our patients had diverse responses during the pandemic. Several factors may have contributed to the finding of improvement in some individuals during the first lockdown, including the degree of family support or conflict, stress reduction owing to isolation, limitations of the outcome measures and/or possible selection bias. Ongoing treatment may have had a protective effect. Clinically, during crises additional support may be needed by families who experience increased conflict or who care for children with intellectual disability.

7.
medRxiv ; 2024 Jan 30.
Article En | MEDLINE | ID: mdl-38410442

Background: Accurate diagnosis of bipolar disorder (BD) is difficult in clinical practice, with an average delay between symptom onset and diagnosis of about 7 years. A key reason is that the first manic episode is often preceded by a depressive one, making it difficult to distinguish BD from unipolar major depressive disorder (MDD). Aims: Here, we use genome-wide association analyses (GWAS) to identify differential genetic factors and to develop predictors based on polygenic risk scores that may aid early differential diagnosis. Methods: Based on individual genotypes from case-control cohorts of BD and MDD shared through the Psychiatric Genomics Consortium, we compile case-case-control cohorts, applying a careful merging and quality control procedure. In a resulting cohort of 51,149 individuals (15,532 BD cases, 12,920 MDD cases and 22,697 controls), we perform a variety of GWAS and polygenic risk scores (PRS) analyses. Results: While our GWAS is not well-powered to identify genome-wide significant loci, we find significant SNP-heritability and demonstrate the ability of the resulting PRS to distinguish BD from MDD, including BD cases with depressive onset. We replicate our PRS findings, but not signals of individual loci in an independent Danish cohort (iPSYCH 2015 case-cohort study, N=25,966). We observe strong genetic correlation between our case-case GWAS and that of case-control BD. Conclusions: We find that MDD and BD, including BD with a depressive onset, are genetically distinct. Further, our findings support the hypothesis that Controls - MDD - BD primarily lie on a continuum of genetic risk. Future studies with larger and richer samples will likely yield a better understanding of these findings and enable the development of better genetic predictors distinguishing BD and, importantly, BD with depressive onset from MDD.

8.
Thorax ; 79(3): 274-278, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38238005

We investigated phenotypic leucocyte telomere length (LTL), genetically predicted LTL (gTL), and lung cancer risk among 371 890 participants, including 2829 incident cases, from the UK Biobank. Using multivariable Cox regression, we found dose-response relationships between longer phenotypic LTL (p-trendcontinuous=2.6×10-5), longer gTL predicted using a polygenic score with 130 genetic instruments (p-trendcontinuous=4.2×10-10), and overall lung cancer risk, particularly for adenocarcinoma. The associations were prominent among never smokers. Mendelian Randomization analyses supported causal associations between longer telomere length and lung cancer (HRper 1 SD gTL=1.87, 95% CI: 1.49 to 2.36, p=4.0×10-7), particularly adenocarcinoma (HRper 1 SD gTL=2.45, 95%CI: 1.69 to 3.57, p=6.5×10-6).


Adenocarcinoma , Lung Neoplasms , Humans , Lung Neoplasms/epidemiology , Lung Neoplasms/genetics , Biological Specimen Banks , Prospective Studies , UK Biobank , Telomere Homeostasis/genetics , Leukocytes , Telomere/genetics
9.
Nat Commun ; 15(1): 301, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-38182608

Floral organ shape and size in cereal crops can affect grain size and yield, so genes that regulate their development are promising breeding targets. The lemma, which protects inner floral organs, can physically constrain grain growth; while the awn, a needle-like extension of the lemma, creates photosynthate to developing grain. Although several genes and modules controlling grain size and awn/lemma growth in rice have been characterized, these processes, and the relationships between them, are not well understood for barley and wheat. Here, we demonstrate that the barley E-class gene HvMADS1 positively regulates awn length and lemma width, affecting grain size and weight. Cytological data indicates that HvMADS1 promotes awn and lemma growth by promoting cell proliferation, while multi-omics data reveals that HvMADS1 target genes are associated with cell cycle, phytohormone signaling, and developmental processes. We define two potential targets of HvMADS1 regulation, HvSHI and HvDL, whose knockout mutants mimic awn and/or lemma phenotypes of mads1 mutants. Additionally, we demonstrate that HvMADS1 interacts with APETALA2 (A-class) to synergistically activate downstream genes in awn/lemma development in barley. Notably, we find that MADS1 function remains conserved in wheat, promoting cell proliferation to increase awn length. These findings extend our understanding of MADS1 function in floral organ development and provide insights for Triticeae crop improvement strategies.


Hordeum , Hordeum/genetics , Plant Breeding , Poaceae , Cell Cycle , Cell Division , Edible Grain , Triticum/genetics
10.
J Infect Dis ; 2024 Jan 05.
Article En | MEDLINE | ID: mdl-38181070

BACKGROUND: Oral human papillomavirus(HPV) infection and the oral microbiome are associated with oropharyngeal cancer. However, population-based data on the association of oral microbiome with oral HPV infection are limited. METHOD: We performed a cross-sectional analysis of 5,496 participants aged 20-59 in National Health and Nutrition Examination Surveys(NHANES):2009-2012. The association between either oral microbiome alpha diversity or beta diversity and oral HPV infection was assessed using multivariable logistic regression or principal coordinate analyses(PCoA) and multivariate analysis of variance(PERMANOVA). RESULTS: For alpha diversity, we found a lower number of observed Amplicon sequence variants(ASVs) (adjusted odds ratio[aOR] = 0.996; 95%CI = 0.992-0.999) and reduced Faith's Phylogenetic Diversity(aOR = 0.95; 95%CI = 0.90-0.99) associated with high-risk oral HPV infection in the overall population. This trend was observed in males for both high-risk and any oral HPV infection. Beta diversity showed differentiation of oral microbiome community by high-risk oral HPV infection as measured by Bray-Curtis dissimilarity (R2 = 0.054%; P = .029) and unweighted UniFrac distance (R2 = 0.046%; P = .045) among the overall population, and associations were driven by males. CONCLUSIONS: Both oral microbiome alpha diversity(within-sample richness and phylogenetic diversity) and beta diversity(heterogeneous dispersion of oral microbiome community) are associated with HPV infection. Longitudinal studies are needed to characterize the role of the microbiome in the natural history of oral HPV infection.

11.
Biostatistics ; 25(2): 486-503, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-36797830

In prospective genomic studies (e.g., DNA methylation, metagenomics, and transcriptomics), it is crucial to estimate the overall fraction of phenotypic variance (OFPV) attributed to the high-dimensional genomic variables, a concept similar to heritability analyses in genome-wide association studies (GWAS). Unlike genetic variants in GWAS, these genomic variables are typically measured with error due to technical limitation and temporal instability. While the existing methods developed for GWAS can be used, ignoring measurement error may severely underestimate OFPV and mislead the design of future studies. Assuming that measurement error variances are distributed similarly between causal and noncausal variables, we show that the asymptotic attenuation factor equals to the average intraclass correlation coefficients of all genomic variables, which can be estimated based on a pilot study with repeated measurements. We illustrate the method by estimating the contribution of microbiome taxa to body mass index and multiple allergy traits in the American Gut Project. Finally, we show that measurement error does not cause meaningful bias when estimating the correlation of effect sizes for two traits.


Genome-Wide Association Study , Genome , Humans , Genome-Wide Association Study/methods , Pilot Projects , Prospective Studies , Phenotype , Polymorphism, Single Nucleotide
12.
medRxiv ; 2024 Apr 03.
Article En | MEDLINE | ID: mdl-37425683

Tumor mutational signatures have the potential to inform cancer diagnosis and treatment. However, their detection in targeted sequenced tumors is hampered by sparse mutations and variability in targeted gene panels. Here we present SATS, a scalable mutational signature analyzer addressing these challenges by leveraging tumor mutational burdens from targeted gene panels. Through analyzing simulated data, pseudo-targeted sequencing data generated by down-sampling whole exome and genome data, and samples with matched whole genome sequencing and targeted sequencing, we showed that SATS can accurately detect common mutational signatures and estimate signature burdens. Applying SATS to 111,711 targeted sequenced tumors from the AACR Project GENIE, we generated a pan-cancer catalogue of mutational signatures tailored to targeted sequencing, enabling estimation of signature burdens within individual tumors. Integrating signatures with clinical data, we demonstrated SATS's clinical utility, including identifying signatures enriched in early-onset hypermutated colorectal cancers and signatures associated with cancer prognosis and immunotherapy response.

13.
Infection ; 52(2): 403-412, 2024 Apr.
Article En | MEDLINE | ID: mdl-37651077

PURPOSE: Donor-derived infection (DDI) has become an important factor affecting the prognosis of lung transplantation patients. The risks versus benefits of using donor organs infected with multidrug-resistant organisms (MDRO), especially carbapenem-resistant organisms (CRO), are frequently debated. Traditional microbial culture and antimicrobial susceptibility testing at present fail to meet the needs of quick CRO determination for donor lungs before acquisition. In this study, we explored a novel screening method by using Xpert® Carba-R assay for CRO in donor lungs in a real-time manner to reduce CRO-associated DDI mortality. METHODS: This study was registered on chictr.org.cn (ChiCTR2100053687) on November 2021. In the Xpert Carba-R screening group, donor lungs were screened for CRO infection by the Xpert Carba-R test on bronchoalveolar fluid (BALF) before acquisition. If the result was negative, donor lung acquisition and subsequent lung transplantation were performed. In the thirty-five potential donors, nine (25.71%) with positive Xpert Carba-R results in BALF were declined for lung transplantation. Twenty-six recipients and the matching CRO-negative donor lungs (74.29%) were included in the Xpert Carba-R screening group. In the control group, nineteen recipients underwent lung transplants without Xpert Carba-R screening. The incidence and mortality of CRO-associated DDI were collected and contrasted between the two groups. RESULTS: Multivariate analysis showed that CRO-related death due to DDI within 60 days was significantly lower in the Xpert Carba-R screening group than that in the control group (OR = 0.05, 95% CI 0.003-0.74, p = 0.03). CONCLUSION: Real-time CRO screening of donor lungs before transplantation at the point of care by the Xpert Carba-R helps clinicians formulate lung transplantation strategies quickly and reduces the risk of subsequent CRO infection improving the prognosis of lung transplantation.


Carbapenems , Lung Transplantation , Humans , Carbapenems/pharmacology , Carbapenems/therapeutic use , Transplant Recipients , Lung , Mass Screening , Lung Transplantation/adverse effects
14.
J Exp Bot ; 75(1): 17-35, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37935244

One of the challenges for global food security is to reliably and sustainably improve the grain yield of cereal crops. One solution is to modify the architecture of the grain-bearing inflorescence to optimize for grain number and size. Cereal inflorescences are complex structures, with determinacy, branching patterns, and spikelet/floret growth patterns that vary by species. Recent decades have witnessed rapid advancements in our understanding of the genetic regulation of inflorescence architecture in rice, maize, wheat, and barley. Here, we summarize current knowledge on key genetic factors underlying the different inflorescence morphologies of these crops and model plants (Arabidopsis and tomato), focusing particularly on the regulation of inflorescence meristem determinacy and spikelet meristem identity and determinacy. We also discuss strategies to identify and utilize these superior alleles to optimize inflorescence architecture and, ultimately, improve crop grain yield.


Hordeum , Inflorescence , Edible Grain/genetics , Edible Grain/metabolism , Poaceae/metabolism , Hordeum/genetics , Triticum/genetics , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Meristem , Gene Expression Regulation, Plant , Plant Proteins/metabolism
15.
Int J Epidemiol ; 53(1)2024 Feb 01.
Article En | MEDLINE | ID: mdl-38124529

BACKGROUND: People with cancer experience high rates of venous thromboembolism (VTE). Risk of subsequent cancer is also increased in people experiencing their first VTE. The causal mechanisms underlying this association are not completely understood, and it is unknown whether VTE is itself a risk factor for cancer. METHODS: We used data from large genome-wide association study meta-analyses to perform bidirectional Mendelian randomization analyses to estimate causal associations between genetic liability to VTE and risk of 18 different cancers. RESULTS: We found no conclusive evidence that genetic liability to VTE was causally associated with an increased incidence of cancer, or vice versa. We observed an association between liability to VTE and pancreatic cancer risk [odds ratio for pancreatic cancer: 1.23 (95% confidence interval: 1.08-1.40) per log-odds increase in VTE risk, P = 0.002]. However, sensitivity analyses revealed this association was predominantly driven by a variant proxying non-O blood group, with inadequate evidence to suggest a causal relationship. CONCLUSIONS: These findings do not support the hypothesis that genetic liability to VTE is a cause of cancer. Existing observational epidemiological associations between VTE and cancer are therefore more likely to be driven by pathophysiological changes which occur in the setting of active cancer and anti-cancer treatments. Further work is required to explore and synthesize evidence for these mechanisms.


Pancreatic Neoplasms , Venous Thromboembolism , Humans , Venous Thromboembolism/epidemiology , Venous Thromboembolism/genetics , Mendelian Randomization Analysis , Genome-Wide Association Study , Risk Factors , Pancreatic Neoplasms/epidemiology , Pancreatic Neoplasms/genetics
16.
PLoS One ; 18(11): e0294851, 2023.
Article En | MEDLINE | ID: mdl-38015985

Finding an analytical solution to the Schrödinger equation with power function superposition potential is essential for the development of quantum theory. For example, the harmonic oscillator potential, Coulomb potential, and Klazer potential are all classed as power function superposition potentials. In this study, the general form of the power function superposition potential was used to decompose the second-order radial Schrödinger equation with this potential into the first-order Ricatti equation. Furthermore, two forms of the power function superposition potential are constructed with an exact analytical solution, and the exact bound-state energy level formula is obtained for these two potentials. Finally, the energy levels of some of the diatomic molecules were determined through calculation. And our results are actually consistent with those obtained by other methods.

17.
aBIOTECH ; 4(3): 224-237, 2023 Sep.
Article En | MEDLINE | ID: mdl-37970465

Arabidopsis sepals coordinate flower opening in the morning as ambient temperature rises; however, the underlying molecular mechanisms are poorly understood. Mutation of one heat shock protein encoding gene, HSP70-16, impaired sepal heat stress responses (HSR), disrupting lipid metabolism, especially sepal cuticular lipids, leading to abnormal flower opening. To further explore, to what extent, lipids play roles in this process, in this study, we compared lipidomic changes in sepals of hsp70-16 and vdac3 (mutant of a voltage-dependent anion channel, VDAC3, an HSP70-16 interactor) grown under both normal (22 °C) and mild heat stress (27 °C, mild HS) temperatures. Under normal temperature, neither hsp70-16 nor vdac3 sepals showed significant changes in total lipids; however, vdac3 but not hsp70-16 sepals exhibited significant reductions in the ratios of all detected 11 lipid classes, except the monogalactosyldiacylglycerols (MGDGs). Under mild HS temperature, hsp70-16 but not vdac3 sepals showed dramatic reduction in total lipids. In addition, vdac3 sepals exhibited a significant accumulation of plastidic lipids, especially sulfoquinovosyldiacylglycerols (SQDGs) and phosphatidylglycerols (PGs), whereas hsp70-16 sepals had a significant accumulation of triacylglycerols (TAGs) and simultaneous dramatic reductions in SQDGs and phospholipids (PLs), such as phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and phosphatidylserines (PSs). These findings revealed that the impact of mild HS on sepal lipidome is influenced by genetic factors, and further, that HSP70-16 and VDAC3 differently affect sepal lipidomic responses to mild HS. Our studies provide a lipidomic insight into functions of HSP and VDAC proteins in the plant's HSR, in the context of floral development. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-023-00103-x.

18.
JAMA Netw Open ; 6(11): e2339254, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37955902

Importance: Estimating absolute risk of lung cancer for never-smoking individuals is important to inform lung cancer screening programs. Objectives: To integrate data on environmental tobacco smoke (ETS), a known lung cancer risk factor, with a polygenic risk score (PRS) that captures overall genetic susceptibility, to estimate the absolute risk of lung adenocarcinoma (LUAD) among never-smokers in Taiwan. Design, Setting, and Participants: The analyses were conducted in never-smoking women in the Taiwan Genetic Epidemiology Study of Lung Adenocarcinoma, a case-control study. Participants were recruited between September 17, 2002, and March 30, 2011. Data analysis was performed from January 17 to July 15, 2022. Exposures: A PRS was derived using 25 genetic variants that achieved genome-wide significance (P < 5 × 10-8) in a recent genome-wide association study, and ETS was defined as never exposed, exposed at home or at work, and exposed at home and at work. Main Outcomes and Measures: The Individualized Coherent Absolute Risk Estimator software was used to estimate the lifetime absolute risk of LUAD in never-smoking women aged 40 years over a projected 40-year span among the controls by using the relative risk estimates for the PRS and ETS exposures, as well as age-specific lung cancer incidence rates for never-smokers in Taiwan. Likelihood ratio tests were conducted to assess an additive interaction between the PRS and ETS exposure. Results: Data were obtained on 1024 women with LUAD (mean [SD] age, 59.6 [11.4] years, 47.9% ever exposed to ETS at home, and 19.5% ever exposed to ETS at work) and 1024 controls (mean [SD] age, 58.9 [11.0] years, 37.0% ever exposed to ETS at home, and 14.3% ever exposed to ETS at work). The overall average lifetime 40-year absolute risk of LUAD estimated using PRS alone was 2.5% (range, 0.6%-10.3%) among women never exposed to ETS. When integrating both ETS and PRS data, the estimated absolute risk was 3.7% (range, 0.6%-14.5%) for women exposed to ETS at home or work and 5.3% (range, 1.2%-12.1%) for women exposed to ETS at home and work. A super-additive interaction between ETS and the PRS (P = 6.5 × 10-4 for interaction) was identified. Conclusions and Relevance: This study found differences in absolute risk of LUAD attributed to genetic susceptibility according to levels of ETS exposure in never-smoking women. Future studies are warranted to integrate these findings in expanded risk models for LUAD.


Adenocarcinoma of Lung , Lung Neoplasms , Tobacco Smoke Pollution , Female , Humans , Middle Aged , Tobacco Smoke Pollution/adverse effects , Case-Control Studies , Early Detection of Cancer , Genetic Predisposition to Disease , Genome-Wide Association Study , Taiwan/epidemiology , Lung Neoplasms/etiology , Lung Neoplasms/genetics , Smoking , Risk Factors , Adenocarcinoma of Lung/epidemiology , Adenocarcinoma of Lung/genetics
19.
Nat Commun ; 14(1): 5962, 2023 10 03.
Article En | MEDLINE | ID: mdl-37789011

Male-pattern baldness (MPB) is related to dysregulation of androgens such as testosterone. A previously observed relationship between MPB and skin cancer may be due to greater exposure to ultraviolet radiation or indicate a role for androgenic pathways in the pathogenesis of skin cancers. We dissected this relationship via Mendelian randomization (MR) analyses, using genetic data from recent male-only meta-analyses of cutaneous melanoma (12,232 cases; 20,566 controls) and keratinocyte cancers (KCs) (up to 17,512 cases; >100,000 controls), followed by stratified MR analysis by body-sites. We found strong associations between MPB and the risk of KC, but not with androgens, and multivariable models revealed that this relationship was heavily confounded by MPB single nucleotide polymorphisms involved in pigmentation pathways. Site-stratified MR analyses revealed strong associations between MPB with head and neck squamous cell carcinoma and melanoma, suggesting that sun exposure on the scalp, rather than androgens, is the main driver. Men with less hair covering likely explains, at least in part, the higher incidence of melanoma in men residing in countries with high ambient UV.


Melanoma , Skin Neoplasms , Humans , Male , Skin Neoplasms/epidemiology , Skin Neoplasms/genetics , Testosterone , Melanoma/epidemiology , Melanoma/genetics , Ultraviolet Rays/adverse effects , Alopecia , Androgens
20.
bioRxiv ; 2023 Sep 26.
Article En | MEDLINE | ID: mdl-37808664

Genome-wide association studies (GWAS) identified over fifty loci associated with lung cancer risk. However, the genetic mechanisms and target genes underlying these loci are largely unknown, as most risk-associated-variants might regulate gene expression in a context-specific manner. Here, we generated a barcode-shared transcriptome and chromatin accessibility map of 117,911 human lung cells from age/sex-matched ever- and never-smokers to profile context-specific gene regulation. Accessible chromatin peak detection identified cell-type-specific candidate cis-regulatory elements (cCREs) from each lung cell type. Colocalization of lung cancer candidate causal variants (CCVs) with these cCREs prioritized the variants for 68% of the GWAS loci, a subset of which was also supported by transcription factor abundance and footprinting. cCRE colocalization and single-cell based trait relevance score nominated epithelial and immune cells as the main cell groups contributing to lung cancer susceptibility. Notably, cCREs of rare proliferating epithelial cell types, such as AT2-proliferating (0.13%) and basal cells (1.8%), overlapped with CCVs, including those in TERT. A multi-level cCRE-gene linking system identified candidate susceptibility genes from 57% of lung cancer loci, including those not detected in tissue- or cell-line-based approaches. cCRE-gene linkage uncovered that adjacent genes expressed in different cell types are correlated with distinct subsets of coinherited CCVs, including JAML and MPZL3 at the 11q23.3 locus. Our data revealed the cell types and contexts where the lung cancer susceptibility genes are functional.

...