Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
Front Vet Sci ; 11: 1351596, 2024.
Article En | MEDLINE | ID: mdl-38628942

African swine fever (ASF) is a highly contagious and lethal viral disease that causes severe hemorrhagic fever in pigs. It keeps spreading around the world, posing a severe socioeconomic risk and endangering biodiversity and domestic food security. ASF first outbroke in China in 2018, and has spread to most provinces nationwide. Genotypes I and II ASF virus (ASFV) as the etiological pathogens have been found in China. In this study, three pairs of specific primers and probes targeting the ASFV B646L gene, F1055L gene, and E183L gene were designed to detect universal, genotype I, and genotype II strains, respectively. A triplex crystal digital PCR (cdPCR) was established on the basis of optimizing various reaction conditions. The assay demonstrated remarkably sensitive with low limits of detection (LODs) of 5.120, 4.218, 4.588 copies/reaction for B646L, F1055L, and E183L gene, respectively; excellent repeatability with 1.24-2.01% intra-assay coefficients of variation (CVs) and 1.32-2.53% inter-assay CVs; good specificity for only detection of genotypes I and II ASFV, without cross-reactivity with PCV2, PRV, SIV, PRRSV, PEDV, FMDV, and CSFV. The triplex cdPCR was used to test 1,275 clinical samples from Guangxi province of China, and the positivity rates were 5.05, 3.22, and 1.02% for genotype I, genotype II, and co-infection of genotypes I and II, respectively. These 1,275 clinical samples were also detected using a reported reference triplex real-time quantitative PCR (qPCR), and the agreements of detection results between these two methods were more than 98.98%. In conclusion, the developed triplex cdPCR could be used as a rapid, sensitive, and accurate method to detect and differentiate genotypes I and II strains of ASFV.

2.
Pathogens ; 13(4)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38668296

Porcine respiratory coronavirus (PRCoV), porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), and pseudorabies virus (PRV) are significant viruses causing respiratory diseases in pigs. Sick pigs exhibit similar clinical symptoms such as fever, cough, runny nose, and dyspnea, making it very difficult to accurately differentially diagnose these diseases on site. In this study, a quadruplex one-step reverse-transcription real-time quantitative PCR (RT-qPCR) for the detection of PRCoV, PRRSV, SIV, and PRV was established. The assay showed strong specificity, high sensitivity, and good repeatability. It could detect only PRCoV, PRRSV, SIV, and PRV, without cross-reactions with TGEV, PEDV, PRoV, ASFV, FMDV, PCV2, PDCoV, and CSFV. The limits of detection (LODs) for PRCoV, PRRSV, SIV, and PRV were 129.594, 133.205, 139.791, and 136.600 copies/reaction, respectively. The intra-assay and inter-assay coefficients of variation (CVs) ranged from 0.29% to 1.89%. The established quadruplex RT-qPCR was used to test 4909 clinical specimens, which were collected in Guangxi Province, China, from July 2022 to September 2023. PRCoV, PRRSV, SIV, and PRV showed positivity rates of 1.36%, 10.17%, 4.87%, and 0.84%, respectively. In addition, the previously reported RT-qPCR was also used to test these specimens, and the agreement between these methods was higher than 99.43%. The established quadruplex RT-qPCR can accurately detect these four porcine respiratory viruses simultaneously, providing an accurate and reliable detection technique for clinical diagnosis.

3.
J Biol Chem ; 300(3): 105779, 2024 Mar.
Article En | MEDLINE | ID: mdl-38395305

The newly discovered zoonotic coronavirus swine acute diarrhea syndrome coronavirus (SADS-CoV) causes acute diarrhea, vomiting, dehydration, and high mortality rates in newborn piglets. Although SADS-CoV uses different strategies to evade the host's innate immune system, the specific mechanism(s) by which it blocks the interferon (IFN) response remains unidentified. In this study, the potential of SADS-CoV nonstructural proteins (nsp) to inhibit the IFN response was detected. The results determined that nsp1 was a potent antagonist of IFN response. SADS-CoV nsp1 efficiently inhibited signal transducer and activator of transcription 1 (STAT1) phosphorylation by inducing Janus kinase 1 (JAK1) degradation. Subsequent research revealed that nsp1 induced JAK1 polyubiquitination through K11 and K48 linkages, leading to JAK1 degradation via the ubiquitin-proteasome pathway. Furthermore, SADS-CoV nsp1 induced CREB-binding protein degradation to inhibit IFN-stimulated gene production and STAT1 acetylation, thereby inhibiting STAT1 dephosphorylation and blocking STAT1 transport out of the nucleus to receive antiviral signaling. In summary, the results revealed the novel mechanisms by which SADS-CoV nsp1 blocks the JAK-STAT signaling pathway via the ubiquitin-proteasome pathway. This study yielded valuable findings on the specific mechanism of coronavirus nsp1 in inhibiting the JAK-STAT signaling pathway and the strategies of SADS-CoV in evading the host's innate immune system.


Alphacoronavirus , Coronavirus Infections , Proteasome Endopeptidase Complex , Swine Diseases , Viral Nonstructural Proteins , Animals , Acetylation , Alphacoronavirus/physiology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Janus Kinase 1/genetics , Janus Kinase 1/metabolism , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Swine , Ubiquitins/metabolism , Swine Diseases/metabolism , Swine Diseases/virology , HEK293 Cells , Vero Cells , Humans , Chlorocebus aethiops , Viral Nonstructural Proteins/metabolism
4.
Microorganisms ; 12(2)2024 Feb 19.
Article En | MEDLINE | ID: mdl-38399820

Porcine deltacoronavirus (PDCoV) has shown large-scale global spread since its discovery in Hong Kong in 2012. In this study, a total of 4897 diarrheal fecal samples were collected from the Guangxi province of China from 2020 to 2023 and tested using RT-qPCR. In total, 362 (362/4897, 7.39%) of samples were positive for PDCoV. The S, M, and N gene sequences were obtained from 34 positive samples after amplification and sequencing. These PDCoV gene sequences, together with other PDCoV S gene reference sequences from China and other countries, were analyzed. Phylogenetic analysis revealed that the Chinese PDCoV strains have diverged in recent years. Bayesian analysis revealed that the new China 1.3 lineage began to diverge in 2012. Comparing the amino acids of the China 1.3 lineage with those of other lineages, the China 1.3 lineage showed variations of mutations, deletions, and insertions, and some variations demonstrated the same as or similar to those of the China 1.2 lineage. In addition, recombination analysis revealed interlineage recombination in CHGX-MT505459-2019 and CHGX-MT505449-2017 strains from Guangxi province. In summary, the results provide new information on the prevalence and evolution of PDCoV in Guangxi province in southern China, which will facilitate better comprehension and prevention of PDCoV.

5.
Biotechnol J ; 19(1): e2300389, 2024 Jan.
Article En | MEDLINE | ID: mdl-38047496

Antiviral vaccines for pig diseases are essential to prevent epidemic outbreaks. However, their production is often hindered by inefficient manufacturing processes that yield lower quantities of the vaccine. To accelerate the progress of various areas of bioproduction, we have considered the necessity of enhancing viral replication efficiency by optimizing ST (swine testicular) cell lines that are commonly utilized in virus manufacturing. CRISPR/Cas9 gene-editing technology were utilized to create IRF3 or IRF7 knockout cell lines that facilitate high-titer viral stock production. Compared to the parental cell lines, the ST IRF3/7 KO cell line displayed a compromised antiviral response to a panel of viruses (Porcine epidemic diarrhea virus, Senecavirus A, Parainfluenza virus 5, and Getah virus), as evidenced by decreased expression of interferon and certain antiviral factors. The inhibition of these responses led to heightened viral replication and increased cytopathic effects, ultimately promoting apoptosis. As a result, the development of these cell lines offers a more efficient approach for biopharmaceutical companies to boost their virus production and reduce associated costs.


CRISPR-Cas Systems , Virus Replication , Animals , Swine , CRISPR-Cas Systems/genetics , Cell Line , Virus Replication/genetics , Gene Editing , Antiviral Agents/pharmacology
6.
Parasitol Res ; 123(1): 18, 2023 Dec 08.
Article En | MEDLINE | ID: mdl-38063934

Toxoplasma gondii is a pathogen that poses a serious threat to human health and causes significant economic losses to the global livestock industry. The prevalence of toxoplasmosis infection has been reported to be high in humans and animals around the world, but the occurrence of the disease has not yet been reported in water buffaloes in Guangxi Zhuang Autonomous Region, southern China. To understand the overall seroprevalence of T. gondii infection in Guangxi, a total of 1041 water buffalo and 114 cat serum samples were examined using an indirect enzyme-linked immunosorbent assay (I-ELISA). Of the 1041 water buffaloes analyzed, an overall seroprevalence of 52.9% (551/1041) was obtained, with year, season, and city location being significant factors affecting the rate of T. gondii infection in water buffaloes (P < 0.001). The results also revealed a high seroprevalence of 57% (65/114) in cats. Given that buffalo milk and meat products are vital food sources, these findings suggest that toxoplasmosis in water buffaloes may be a public health threat. This study provides the first T. gondii seroprevalence data in Guangxi, which could contribute to the prevention and control of toxoplasmosis in the region.


Bison , Toxoplasma , Toxoplasmosis, Animal , Cats , Humans , Animals , Buffaloes , Toxoplasmosis, Animal/epidemiology , Seroepidemiologic Studies , China/epidemiology , Antibodies, Protozoan , Risk Factors
7.
Cell Commun Signal ; 21(1): 361, 2023 12 18.
Article En | MEDLINE | ID: mdl-38110975

Getah virus (GETV) was becoming more serious and posing a potential threat to animal safety and public health. Currently, there is limited comprehension regarding the pathogenesis and immune evasion mechanisms employed by GETV. Our study reveals that GETV infection exhibits the capacity for interferon antagonism. Specifically, the nonstructural protein nsP2 of GETV plays a crucial role in evading the host immune response. GETV nsP2 effectively inhibits the induction of IFN-ß by blocking the phosphorylation and nuclear translocation of IRF3. Additionally, GETV nsP2 hinders the phosphorylation of STAT1 and its nuclear accumulation, leading to significantly impaired JAK-STAT signaling. Furthermore, the amino acids K648 and R649, situated in the C-terminal region of GETV nsP2, play a crucial role in facilitating nuclear localization. Not only do they affect the interference of nsP2 with the innate immune response, but they also exert an influence on the pathogenicity of GETV in mice. In summary, our study reveals novel mechanisms by which GETV evades the immune system, thereby offering a foundation for comprehending the pathogenic nature of GETV. Video Abstract.


Alphavirus , Interferons , Animals , Mice , Cell Line , Immunity, Innate , Immune Evasion
8.
Front Vet Sci ; 10: 1276505, 2023.
Article En | MEDLINE | ID: mdl-38026635

Porcine hemagglutinating encephalomyelitis virus (PHEV), porcine pseudorabies virus (PRV), classical swine fever virus (CSFV), and Japanese encephalitis virus (JEV) cause similar neurological symptoms in the infected pigs, and their differential diagnosis depends on laboratory testing. Four pairs of specific primers and probes were designed targeting the PHEV N gene, PRV gB gene, CSFV 5' untranslated region (5'UTR), and JEV NS1 gene, respectively, and a quadruplex real-time quantitative RT-PCR (qRT-PCR) was developed to detect and differentiate PHEV, PRV, CSFV, and JEV. The assay showed high sensitivity, with the limit of detection (LOD) of 1.5 × 101 copies/µL for each pathogen. The assay specifically detected only PHEV, PRV, CSFV, and JEV, without cross-reaction with other swine viruses. The coefficients of variation (CVs) of the intra-assay and the inter-assay were less than 1.84%, with great repeatability. A total of 1,977 clinical samples, including tissue samples, and whole blood samples collected from Guangxi province in China, were tested by the developed quadruplex qRT-PCR, and the positivity rates of PHEV, PRV, CSFV, and JEV were 1.57% (31/1,977), 0.35% (7/1,977), 1.06% (21/1,977), and 0.10% (2/1,977), respectively. These 1,977 samples were also tested by the previously reported qRT-PCR assays, and the coincidence rates of these methods were more than 99.90%. The developed assay is demonstrated to be rapid, sensitive, and accurate for detection and differentiation of PHEV, PRV, CSFV, and JEV.

9.
Front Vet Sci ; 10: 1278714, 2023.
Article En | MEDLINE | ID: mdl-37929278

African swine fever virus (ASFV) was first identified in 1921 and is extensively prevalent around the world nowadays, which has a significant negative impact on the swine industry. In China, genotype II ASFV was first discovered in 2018, and has spread quickly to different provinces in a very short time; genotype I ASFV was first found in 2020, and has been reported in several provinces since then. To establish an accurate method for detection and differentiation of genotypes I and II ASFV, three primers and probes were designed targeting the ASFV B646L gene for different genotypes, the F1055L gene for genotype I, and the E183L gene for genotype II, and a triplex real-time quantitative PCR (qPCR) for differential detection of genotypes I and II ASFV was developed after optimizing the reaction conditions. The assay showed high sensitivity, and the limits of detection (LOD) of the B646L, F1055L, and E183L genes were 399.647 copies/reaction, 374.409 copies/reaction, and 355.083 copies/reaction, respectively; the coefficients of variation (CVs) of the intra-assay and the inter-assay were 0.22-1.88% and 0.16-1.68%, respectively, showing that this method had good repeatability; the assay could detect only ASFV, without cross-reactivity with other swine viruses including PRRSV, PEDV, PDCoV, CSFV, PRV, and PCV2, showing excellent specificity of this method. A total of 3,519 clinical samples from Guangxi province, southern China, were tested by the developed assay, and 8.16% (287/3,519) samples were found to be positive for ASFV, of which 0.17% (6/3,519) samples were positive for genotype I, 7.19% (253/3,519) samples for genotype II, and 0.80% (28/3,519) samples for genotypes I and II. At the same time, these clinical samples were also tested by a previously reported multiplex qPCR, and the agreement between these two methods was more than 99.94%. In summary, the developed triplex qPCR provided a fast, specific and accurate method for detection and differentiation of genotypes I and II ASFV.

10.
Front Vet Sci ; 10: 1222789, 2023.
Article En | MEDLINE | ID: mdl-37662994

Duck Tembusu virus (DTMUV), duck circovirus (DuCV), and new duck reovirus (NDRV) have seriously hindered the development of the poultry industry in China. To detect the three pathogens simultaneously, a multiplex digital PCR (dPCR) was developed and compared with multiplex qPCR in this study. The multiplex dPCR was able to specifically detect DTMUV, DuCV, and NDRV but not amplify Muscovy duck reovirus (MDRV), Muscovy duck parvovirus (MDPV), goose parvovirus (GPV), H4 avian influenza virus (H4 AIV), H6 avian influenza virus (H6 AIV), and Newcastle disease virus (NDV). The standard curves showed excellent linearity in multiplex dPCR and qPCR and were positively correlated. The sensitivity results showed that the lowest detection limit of multiplex dPCR was 1.3 copies/µL, which was 10 times higher than that of multiplex qPCR. The reproducibility results showed that the intra- and interassay coefficients of variation were 0.06-1.94%. A total of 173 clinical samples were tested to assess the usefulness of the method; the positive detection rates for DTMUV, DuCV, and NDRV were 18.5, 29.5, and 14.5%, respectively, which were approximately 4% higher than those of multiplex qPCR, and the kappa values for the clinical detection results of multiplex dPCR and qPCR were 0.85, 0.89, and 0.86, indicating that the two methods were in excellent agreement.

11.
Pathogens ; 12(9)2023 Aug 28.
Article En | MEDLINE | ID: mdl-37764899

Rotavirus A species (RVA), RVB, RVC, and RVH are four species of rotaviruses (RVs) that are prevalent in pig herds, and co-infections occur frequently. In this study, a quadruplex real-time quantitative RT-PCR (RT-qPCR) for the simultaneous detection of four porcine RVs was developed by designing specific primers and probes based on the VP6 gene of RVA, RVB, RVC, and RVH, respectively. The method showed high specificity and could only detect RVA, RVB, RVC, and RVH, without cross-reaction with other porcine viruses; showed excellent sensitivity, with a limit of detection (LOD) of 1.5 copies/µL for each virus; showed good repeatability, with intra-assay coefficients of variation (CVs) of 0.15-1.14% and inter-assay CVs of 0.07-0.96%. A total of 1447 clinical fecal samples from Guangxi province in China were tested using the developed quadruplex RT-qPCR. The results showed that RVA (42.71%, 618/1447), RVB (26.95%, 390/1447), RVC (42.92%, 621/1447), and RVH (13.68%, 198/1447) were simultaneously circulating in the pig herds, and the co-infection rate of different species of rotaviruses was found to be up to 44.01% (579/1447). The clinical samples were also detected using one previously reported method, and the coincidence rate of the detection results using two methods was more than 99.65%. The phylogenetic tree based on the VP6 gene sequences of RVH revealed that the porcine RVH strains from Guangxi province belonged to the genotype I5, which was closely related to Japanese and Vietnamese strains. In summary, an efficient, sensitive, and accurate method for the detection and differentiation of RVA, RVB, RVC, and RVH was developed and applied to investigate the prevalence of porcine RVs in Guangxi province, China. This study is the first to report the prevalence of porcine RVH in China.

12.
Pathogens ; 12(9)2023 Aug 28.
Article En | MEDLINE | ID: mdl-37764900

African swine fever (ASF) is a severe and highly contagious viral disease that affects domestic pigs and wild boars, characterized by a high fever and internal bleeding. The disease is caused by African swine fever virus (ASFV), which is prevalent worldwide and has led to significant economic losses in the global pig industry. In this study, three pairs of specific primers and TaqMan probes were designed for the ASFV B646L, MGF505-2R and I177L genes. After optimizing the reaction conditions of the annealing temperature, primer concentration and probe concentration, triplex crystal digital PCR (cdPCR) and triplex real-time quantitative PCR (qPCR) were developed for the detection and differentiation of the wild-type ASFV strain and the MGF505-2R and/or I177L gene-deleted ASFV strains. The results indicate that both triplex cdPCR and triplex qPCR were highly specific, sensitive and repeatable. The assays could detect only the B646L, MGF505-2R and I177L genes, without cross-reaction with other swine viruses (i.e., PRRSV, CSFV, PCV2, PCV3, PEDV, PDCoV and PRV). The limit of detection (LOD) of triplex cdPCR was 12 copies/reaction, and the LOD of triplex qPCR was 500 copies/reaction. The intra-assay and inter-assay coefficients of variation (CVs) for repeatability and reproducibility were less than 2.7% for triplex cdPCR and less than 1.8% for triplex qPCR. A total of 1510 clinical tissue samples were tested with both methods, and the positivity rates of ASFV were 14.17% (214/1510) with triplex cdPCR and 12.98% (196/1510) with triplex qPCR, with a coincidence rate of 98.81% between the two methods. The positivity rate for the MGF505-2R gene-deleted ASFV strains was 0.33% (5/1510), and no I177L gene-deleted ASFV strain was found. The results indicate that triplex cdPCR and triplex qPCR developed in this study can provide rapid, sensitive and accurate methods for the detection and differentiation of the ASFV B646L, MGF505-2R and I177L genes.

13.
J Med Virol ; 95(9): e29104, 2023 09.
Article En | MEDLINE | ID: mdl-37721411

Swine acute diarrhea syndrome (SADS) is first reported in January 2017 in Southern China. It subsequently causes widespread outbreaks in multiple pig farms, leading to economic losses. Therefore, it is an urgent to understand the molecular mechanisms underlying the pathogenesis and immune evasion of Swine acute diarrhea syndrome coronavirus (SADS-CoV). Our research discovered that SADS-CoV inhibited the production of interferon-ß (IFN-ß) during viral infection. The nonstructural protein 1 (nsp1) prevented the phosphorylation of TBK1 by obstructing the interaction between TBK1 and Ub protein. Moreover, nsp1 induced the degradation of CREB-binding protein (CBP) through the proteasome-dependent pathway, thereby disrupting the IFN-ß enhancer and inhibiting IFN transcription. Finally, we identified nsp1-Phe39 as the critical amino acid that downregulated IFN production. In conclusion, our findings described two mechanisms in nsp1 that inhibited IFN production and provided new insights into the evasion strategy adopted by SADS-CoV to evade host antiviral immunity.


Alphacoronavirus , CREB-Binding Protein , Animals , Swine , Phosphorylation , Amino Acids , Interferon-beta/genetics
14.
Vet Sci ; 10(5)2023 May 04.
Article En | MEDLINE | ID: mdl-37235413

Atypical porcine pestivirus (APPV), a newly discovered virus, is associated with the type A-II congenital tremor (CT) in neonatal piglets. APPV distributes throughout the world and causes certain economic losses to the swine industry. The specific primers and probe were designed targeting the 5' untranslated region (UTR) of APPV to amplify a 90 bp fragment, and the recombinant standard plasmid was constructed. After optimizing the concentrations of primers and probe, annealing temperature, and reaction cycles, a crystal digital RT-PCR (cdRT-PCR) and real-time quantitative RT-PCR (qRT-PCR) were successfully established. The results showed that the standard curves of the qRT-PCR and the cdRT-PCR had R2 values of 0.999 and 0.9998, respectively. Both methods could specifically detect APPV, and no amplification signal was obtained from other swine viruses. The limit of detection (LOD) of the cdRT-PCR was 0.1 copies/µL, and that of the qRT-PCR was 10 copies/µL. The intra-assay and inter-assay coefficients of variation of repeatability and reproducibility were less than 0.90% for the qRT-PCR and less than 5.27% for the cdRT-PCR. The 60 clinical tissue samples were analyzed using both methods, and the positivity rates of APPV were 23.33% by the qRT-PCR and 25% by the cdRT-PCR, with a coincidence rate of 98.33%. The results indicated that the cdRT-PCR and the qRT-PCR developed here are highly specific, sensitive methods for the rapid and accurate detection of APPV.

15.
Animals (Basel) ; 13(4)2023 Feb 08.
Article En | MEDLINE | ID: mdl-36830384

Porcine reproductive and respiratory syndrome virus (PRRSV) type 1 (European genotype) and PRRSV type 2 (North American genotype) are prevalent all over the world. Nowadays, the North American genotype PRRSV (NA-PRRSV) has been widely circulating in China and has caused huge economic losses to the pig industry. In recent years, classical PRRSV (C-PRRSV), highly pathogenic PRRSV (HP-PRRSV), and NADC30-like PRRSV (NL-PRRSV) have been the most common circulating strains in China. In order to accurately differentiate the circulating strains of NA-PRRSV, three pairs of specific primers and corresponding probes were designed for the Nsp2 region of C-PRRSV, HP-PRRSV, and NL-PRRSV. After optimizing the annealing temperature, primer concentration, and probe concentration, a multiplex real-time quantitative RT-PCR (qRT-PCR) and a multiplex Crystal digital RT-PCR (cdRT-PCR) for the differential detection of C-PRRSV, HP-PRRSV, and NL-PRRSV were developed. The results showed that the two assays illustrated high sensitivity, with a limit of detection (LOD) of 3.20 × 100 copies/µL for the multiplex qRT-PCR and 3.20 × 10-1 copies/µL for the multiplex cdRT-PCR. Both assays specifically detected the targeted viruses, without cross-reaction with other swine viruses, and indicated excellent repeatability, with coefficients of variation (CVs) of less than 1.26% for the multiplex qRT-PCR and 2.68% for the multiplex cdRT-PCR. Then, a total of 320 clinical samples were used to evaluate the application of these assays, and the positive rates of C-PRRSV, HP-PRRSV, and NL-PRRSV by the multiplex qRT-PCR were 1.88%, 21.56%, and 9.69%, respectively, while the positive rates by the multiplex cdRT-PCR were 2.19%, 25.31%, and 11.56%, respectively. The high sensitivity, strong specificity, excellent repeatability, and reliability of these assays indicate that they could provide useful tools for the simultaneous and differential detection of the circulating strains of C-PRRSV, HP-PRRSV, and NL-PRRSV in the field.

16.
Chem Biodivers ; 20(3): e202201247, 2023 Mar.
Article En | MEDLINE | ID: mdl-36811262

Series of (3-phenylisoxazol-5-yl)methanimine derivatives were synthesized, and evaluated for anti-hepatitis B virus (HBV) activity in vitro. Half of them more effectively inhibited HBsAg than 3TC, and more favor to inhibit secretion of HBeAg than to HBsAg. Part of the compounds with significant inhibition on HBeAg were also effectively inhibit replication of HBV DNA. Compound (E)-3-(4-fluorophenyl)-5-((2-phenylhydrazineylidene)methyl)isoxazole inhibited excellently HBeAg with IC50 in 0.65 µM (3TC(Lamivudine) in 189.90 µM), inhibited HBV DNA in 20.52 µM (3TC in 26.23 µM). Structures of compounds were determined by NMR and HRMS methods, and chlorination on phenyl ring of phenylisoxazol-5-yl was confirmed by X-ray diffraction analysis, and the structure-activity relationships (SARs) of the derivatives was discussed. This work provided a new class of potent non-nucleoside anti-HBV agents.


Hepatitis B virus , Herpesvirus 1, Cercopithecine , Hepatitis B virus/genetics , Hepatitis B Surface Antigens , Antiviral Agents/chemistry , Herpesvirus 1, Cercopithecine/genetics , Hepatitis B e Antigens/pharmacology , DNA, Viral/genetics , DNA, Viral/pharmacology , Virus Replication
17.
Anim Biotechnol ; 34(7): 3274-3279, 2023 Dec.
Article En | MEDLINE | ID: mdl-36165738

Neospora caninum is an important obligate intracellular apicomplexan parasite that causes spontaneous abortions in cattle and leads to huge economic losses to the farming industry. Although a high prevalence of N. caninum infection has been reported in Asia, data on the prevalence of water buffaloes in China remain unclear. To understand the seroprevalence of N. caninum infection in water buffaloes and its definitive host dogs in China, a total of 987 water buffalo sera from Guangxi Province were tested using an indirect enzyme-linked immunosorbent assay. We obtained an overall seroprevalence of 50.9% (502/987) for water buffalo samples. And the positive rate was higher in border cities (56.8%, 425/748) than in central cities (32.3%, 77/239). We further tested 240 serum samples from dogs in Guangxi and found an overall prevalence of 57.9% (139/240). The high prevalence of N. caninum infection in both dogs and water buffaloes was first reported in southern China, and these data will surely contribute to the prevention and control of the disease.


Cattle Diseases , Coccidiosis , Dog Diseases , Neospora , Female , Pregnancy , Cattle , Animals , Dogs , Buffaloes , China/epidemiology , Seroepidemiologic Studies , Coccidiosis/epidemiology , Coccidiosis/veterinary , Coccidiosis/parasitology , Antibodies, Protozoan , Enzyme-Linked Immunosorbent Assay/veterinary , Cattle Diseases/epidemiology
18.
Front Immunol ; 13: 1050354, 2022.
Article En | MEDLINE | ID: mdl-36505441

Porcine sapelovirus (PSV) is an emerging pathogen associated with symptoms of enteritis, pneumonia, polioencephalomyelitis and reproductive disorders in swine, resulting in significant economic losses. Although PSV is reported to trigger cell apoptosis, its specific molecular mechanism is unclear. In this research, the cell apoptosis induced by PSV infection and its underlying mechanisms were investigated. The morphologic features of apoptosis include nuclear condensation and fragmentation, were observed after PSV infection. The cell apoptosis was confirmed by analyzing the apoptotic rates, caspase activation, and PARP1 cleavage. Caspase inhibitors inhibited the PSV-induced intrinsic apoptosis pathway and reduced viral replication. Among the proteins encoded by PSV, 2A is an important factor in inducing the mitochondrial apoptotic pathway. The conserved residues H48, D91, and C164 related to protease activity in PSV 2A were crucial for 2A-induced apoptosis. In conclusion, our results provide insights into how PSV induces host cell apoptosis.


Apoptosis , Mitochondria , Swine , Animals , Caspase Inhibitors , Proteolysis , Protein Processing, Post-Translational
19.
Vet Sci ; 9(11)2022 Nov 16.
Article En | MEDLINE | ID: mdl-36423083

Porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV) are four identified porcine enteric coronaviruses. Pigs infected with these viruses show similar manifestations of diarrhea, vomiting, and dehydration. Here, a quadruplex real-time quantitative PCR (qRT-PCR) assay was established for the differential detection of PEDV, TGEV, PDCoV, and SADS-CoV from swine fecal samples. The assay showed extreme specificity, high sensitivity, and excellent reproducibility, with the limit of detection (LOD) of 121 copies/µL (final reaction concentration of 12.1 copies/µL) for each virus. The 3236 clinical fecal samples from Guangxi province in China collected between October 2020 and October 2022 were evaluated by the quadruplex qRT-PCR, and the positive rates of PEDV, TGEV, PDCoV, and SADS-CoV were 18.26% (591/3236), 0.46% (15/3236), 13.16% (426/3236), and 0.15% (5/3236), respectively. The samples were also evaluated by the multiplex qRT-PCR reported previously by other scientists, and the compliance rate between the two methods was more than 99%. This illustrated that the developed quadruplex qRT-PCR assay can provide an accurate method for the differential detection of four porcine enteric coronaviruses.

20.
Front Vet Sci ; 9: 912224, 2022.
Article En | MEDLINE | ID: mdl-35782548

African swine fever virus (ASFV) causes contagious hemorrhagic disease of pigs with high morbidity and mortality. To identify the molecular characteristics of ASFV strains circulating in Guangxi province, southern China, a total of 336 tissue samples collected from 336 domestic pigs that died as a result of severe hemorrhagic disease during 2019-2020 were tested for ASFV. Furthermore, 66 ASFV strains were genetically characterized by sequence analysis of the C-terminal region of B646L (p72) gene, the complete E183L (p54) gene, the variable region of EP402R (CD2v) gene, the central variable region (CVR) of B602L gene, the full MGF505-2R gene, and the tandem repeat sequence (TRS) within intergenic region (IGR) between the I73R and I329L (I73R/I329L) genes. Phylogenetic analysis revealed that the ASFV strains from Guangxi province belonged to genotypes I and II based on the B646L (p72) and E183L (p54) genes, and there were eight different tetrameric TRS variants based on the CVR of B602L gene. Phylogenetic analysis of the EP402R (CD2v) gene revealed that these ASFV strains belonged to serogroups 4 and 8. Eight of the 66 strains belonged to genotype I and serogroup 4, and showed deletion of whole MGF505-2R gene. The sequence analysis of the IGR between the I73R/I329L genes showed that IGR II and III variants were co-circulating in Guangxi province. The results indicated that ASFV strains circulating in Guangxi province during 2019-2020 outbreaks showed high genetic diversity, of which genotypes I and II, as well as serogroups 4 and 8, were simultaneously circulating in Guangxi province, and there existed wild-type and naturally gene-deleted strains in the field. This is the first detailed report on the molecular characterization of the ASFV strains circulating in southern China, and serogroup 4 in China.

...