Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Prostate ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39263692

RESUMEN

PURPOSE: This study was to construct a nomogram utilizing shear wave elastography and assess its efficacy in detecting clinically significant prostate cancer (csPCa). METHODS: 290 elderly people with suspected PCa who received prostate biopsy and shear wave elastography (SWE) imaging were respectively registered from April 2022 to December 2023. The elderly participants were stratified into two groups: those with csPCa and those without csPCa, which encompassed cases of clinically insignificant prostate cancer (cisPCa) and non-prostate cancer tissue, as determined by pathology findings. The LASSO algorithm, known as the least absolute shrinkage and selection operator, was utilized to identify features. Logistic regression analysis was utilized to establish models. Receiver operating characteristic (ROC) and calibration curves were utilized to evaluate the discriminatory ability of the nomogram. Bootstrap (1000 bootstrap iterations) was employed for internal validation and comparison with two models. A decision curve and a clinical impact curve were employed to assess the clinical usefulness. RESULTS: Our nomogram, which contained Emean, ΔEmean, prostate volume, prostate-specific antigen density (PSAD), and transrectal ultrasound (TRUS), showed better discrimination (AUC = 0.89; 95% CI: 0.83-0.94), compared to the clinical model without SWE parameters (p = 0.0007). Its accuracy, sensitivity and specificity were 0.83, 0.89 and 0.78, respectively. Based on the analysis of decision curve, the thresholds ranged from 5% to 90%. According to our nomogram, biopsying patients at a 20% probability threshold resulted in a 25% reduction in biopsies without missing any csPCa. The clinical impact curve demonstrated that the nomogram's predicted outcome is closer to the observed outcome when the probability threshold reaches 20% or greater. CONCLUSION: Our nomogram demonstrates efficacy in identifying elderly individuals with clinically significant prostate cancer, thereby facilitating informed clinical decision-making based on diagnostic outcomes and potential clinical benefits.

2.
J Diabetes Res ; 2024: 5544296, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39263491

RESUMEN

Aim: The aim of the study is to identify the regulatory role of intestinal sweet taste receptors (STRs) and glucose transporters (SGLT1, GLUT2) and gut peptide secretion in duodenal-jejunal bypass (DJB)-ameliorated glycemic control in Type 2 diabetes. Materials and Methods: DJB and sham surgeries were performed in streptozotocin-induced diabetic male rats. The blood GLP-1 and GLP-2 levels were evaluated under feeding and fasting conditions. The expression of STRs (T1R2, T1R3), sweet taste signaling effector (Gα-gustducin), SGLT1, and GLUT2 was detected in the intestinal alimentary limb (A limb), biliopancreatic limb (BP limb), and common limb (C limb). The effects of STR inhibition on glucose control were measured with lactisole. Results: Glucose tolerance was improved in DJB-operated rats compared with the sham group, similar to that of normal control rats, without significant differences in food intake and body weight. The plasma GLP-1 levels of DJB rats were increased under diet-fed condition, and GLP-2 levels were increased after fasting. The villus height and crypt depth were significantly increased in the A limb of DJB-operated rats. In addition, GLP-1 expression was restored in enterocytes. The expression of T1R2, Gα-gustducin, and SGLT1 was elevated in the A limb after DJB, while GLUT2 was downregulated in the A, BP, and C limbs. The localization of GLUT2 was normalized in the three intestinal limbs after DJB. However, the beneficial effects of DJB on glucose control were abolished in the presence of lactisole in vivo. Conclusion: DJB ameliorates glycemic control probably by restoring STR-mediated glucose sensing and absorption with the responses of GLP-1 and GLP-2 to carbohydrate.


Asunto(s)
Glucemia , Diabetes Mellitus Experimental , Duodeno , Péptido 1 Similar al Glucagón , Transportador de Glucosa de Tipo 2 , Yeyuno , Receptores Acoplados a Proteínas G , Transportador 1 de Sodio-Glucosa , Animales , Masculino , Transportador 1 de Sodio-Glucosa/metabolismo , Transportador de Glucosa de Tipo 2/metabolismo , Yeyuno/cirugía , Yeyuno/metabolismo , Duodeno/cirugía , Duodeno/metabolismo , Diabetes Mellitus Experimental/cirugía , Diabetes Mellitus Experimental/metabolismo , Ratas , Receptores Acoplados a Proteínas G/metabolismo , Glucemia/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Absorción Intestinal , Péptido 2 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Ratas Sprague-Dawley , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/cirugía , Transducina/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/cirugía
3.
Nanomaterials (Basel) ; 14(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39120343

RESUMEN

This study investigated the synthesis of cerium oxide (CeO2) nanoparticles (NPs) and composites with reduced graphene oxide (rGO) for the enhanced electrochemical sensing of ammonia. CeO2 NPs were prepared by the focused laser ablation in liquid (LAL) method, which enabled the production of high-purity, spherical nanoparticles with a uniform dispersion and sizes under 50 nm in a short time. The effects of varying irradiation fluence and time on the nanoparticle size, production yield, and dispersion were systematically studied. The synthesized CeO2 NPs were doped with rGO to form CeO2/rGO composites, which were drop casted to modify the glassy carbon electrodes (GCE). The CeO2/rGO-GCE electrodes exhibited superior electrochemical properties compared with single-component electrodes, which demonstrated the significant potential for ammonia detection, especially at a 4 J/cm2 fluence. The CeO2/rGO composites showed uniformly dispersed CeO2 NPs between the rGO sheets, which enhanced the conductivity, as confirmed by SEM, EDS mapping, and XRD analysis. Cyclic voltammetry data demonstrated superior electrochemical activity of the CeO2/rGO composite electrodes, with the 2rGO/1CeO2 ratio showing the highest current response and sensitivity. The CV response to varying ammonia concentrations exhibited a linear relationship, indicating the electrode's capability for accurate quantification. These findings highlight the effectiveness of focused laser ablation in enhancing nanoparticle synthesis and the promising synergistic effects of CeO2 and rGO in developing high-performance electrochemical sensors.

4.
Cell Biochem Biophys ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026057

RESUMEN

Ferroptosis, an iron- and ROS-dependent form of regulated cell death. Cuproptosis is a novel form of cellular demise mode. Quercetin, a natural flavonoid, has demonstrated a range of pharmacological activities, including anti-cancer, anti-inflammatory, and antioxidant properties. In this research, we investigated the quercetin effect on cisplatin-induced acute kidney and its mechanism associated ferroptosis and cuproptosis. The HK-2 cells were used in this research. Cell viability was evaluated using the CCK-8 assay. Acute kidney injury (AKI) models were established to perform in vivo experiments. Renal tissue homogenate was used to determine ROS, LPO, MDA, PA, etc., to assess ferroptosis and cuproptosis. To perform bioinformatic analysis, microarray data from the GEO database was utilized. Real-time PCR analysis and ELISA was explored the mechanism of ferroptosis and cuproptosis. We found that ferroptosis and cuproptosis in AKI were abnormally activated caused by cisplatin, and that quercetin attenuated AKI by inhibiting ferroptosis and cuproptosis. QCT suppressed ferroptosis by reducing malondialdehyde (MDA) and ROS levels and increasing glutathione (GSH) levels and alleviated cuproptosis by reducing copper ion, pyruvate (PA) and HSP70 levels. Moreover, bioinformatic analysis revealed that the ferroptosis-related gene SLC7A11 and the cuproptosis-related genes ATP7B and GLS were the differential expression genes. And QCT significantly increased the expression or activity of SLC7A11, GPX4, ATP7B, and GLS in Cis-AKI mice. Our findings highlight the clinical importance of quercetin, which guards against cisplatin-induced acute kidney injury by suppressing ferroptosis and cuproptosis.

5.
Int J Mol Med ; 54(2)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38963035

RESUMEN

Globally, non­small cell lung cancer (NSCLC) is a significant threat to human health, and constitutes >80% of lung cancer cases. Cisplatin (CDDP), a commonly used drug in clinical treatment, has been the focus of research aiming to mitigate its potent toxicity through encapsulation within liposomes. However, challenges, such as a reduced drug loading efficiency and nonspecific release, have emerged as obstacles. The present study aimed to improve the encapsulation efficiency of CDDP within liposomes by pre­preparation of CDDP and modifying the liposome surface through the incorporation of peanut agglutinin (PNA) as a ligand [CDDP­loaded PNA­modified liposomes (CDDP­PNA­Lip)]. This strategy was designed to enhance the delivery of CDDP to tumour tissues, thereby reducing associated side effects. The effect of CDDP­PNA­Lip on the proliferation and migration of NSCLC cell lines with high MUC1 expression was elucidated through in vitro studies. Additionally, the capacity of PNA modification to augment the targeted anti­tumour efficacy of liposomes was assessed through xenograft tumour experiments. The results indicated that in an in vitro uptake assay Rhodamine B (RhB)­loaded PNA­modified liposomes were taken up by cells with ~50% higher efficiency compared with free RhB. In addition, CDDP­PNA­Lip resulted in a 2.65­fold enhancement of tumour suppression in vivo compared with free CDDP. These findings suggested that the encapsulation of CDDP within ligand­modified liposomes may significantly improve its tumour­targeting capabilities, providing valuable insights for clinical drug development.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Cisplatino , Liposomas , Neoplasias Pulmonares , Aglutinina de Mani , Cisplatino/farmacología , Cisplatino/administración & dosificación , Liposomas/química , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Animales , Aglutinina de Mani/química , Línea Celular Tumoral , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular/efectos de los fármacos , Ratones Desnudos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Ratones Endogámicos BALB C , Movimiento Celular/efectos de los fármacos , Femenino , Sistemas de Liberación de Medicamentos/métodos
6.
Int Immunopharmacol ; 137: 112433, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38870879

RESUMEN

BACKGROUND: Gastric cancer (GC) is a refractory malignant tumor with high tumor heterogeneity, a low rate of early diagnosis, and poor patient prognosis. Lipid metabolism reprogramming plays a critical role in tumorigenesis and progression, but its prognostic role and regulatory mechanism in GC are rarely studied. Thus, the identification of signatures related to lipid metabolism is necessary and may present a new avenue for improving the overall prognosis of GC. METHODS: Lipid metabolism-associated genes (LMAGs) with differential expression in tumor and tumor-adjacent tissue were acquired to identify lipid metabolism-associated subtypes. The differentially expressed genes (DEGs) between the two clusters were then utilized for prognostic analysis and signature construction. Additionally, pathway enrichment analysis and immune cell infiltration analysis were employed to identify the characteristics of the prognostic model. Further analyses were conducted at the single-cell level to better understand the model's prognostic mechanism. Finally, the prediction of immunotherapy response was used to suggest potential treatments. RESULTS: Two lipid metabolism-associated subtypes were identified and 9 prognosis-related genes from the DEGs between the two clusters were collected for the construction of the prognostic model named lipid metabolism-associated signature (LMAS). Then we found the low LMAS patients with favorable prognoses were more sensitive to ferroptosis in the Cancer Genome Atlas of Stomach Adenocarcinoma (TCGA-STAD). Meanwhile, the tumor cells exhibiting high levels of lipid peroxidation and accumulation of reactive oxygen species (ROS) in single-cell levels were primarily enriched in the low LMAS group, which was more likely to induce ferroptosis. In addition, endothelial cells and cancer-associated fibroblasts (CAFs) facilitated tumor angiogenesis, proliferation, invasion, and metastasis through endothelial-mesenchymal transition (EndMT), affecting the prognosis of the patients with high LMAS scores. Moreover, CD1C- CD141- dendritic cells (DCs) also secreted pro-tumorigenic cytokines to regulate the function of endothelial cells and CAFs. Finally, the patients with low LMAS scores might have better efficacy in immunotherapy. CONCLUSIONS: A LMAS was constructed to guide GC prognosis and therapy. Meanwhile, a novel anti-tumor effect was found in lipid metabolism reprogramming of GC which improved patients' prognosis by regulating the sensitivity of tumor cells to ferroptosis. Moreover, EndMT may have a negative impact on GC prognosis.


Asunto(s)
Ferroptosis , Metabolismo de los Lípidos , Neoplasias Gástricas , Microambiente Tumoral , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/inmunología , Ferroptosis/genética , Humanos , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Metabolismo de los Lípidos/genética , Pronóstico , Regulación Neoplásica de la Expresión Génica , Transición Endotelial-Mesenquimatosa , Reprogramación Metabólica
7.
Bioorg Med Chem ; 108: 117776, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38852257

RESUMEN

Myocardial ischemia/reperfusion (MI/R) is a common cardiovascular disease that seriously affects the quality of life and prognosis of patients. In recent years, matrine has attracted widespread attention in the treatment of cardiovascular diseases. This study designed, synthesized, and characterized 20 new matrine derivatives and studied their protective effects on ischemia-reperfusion injury through in vivo and in vitro experiments. Based on cellular assays, most newly synthesized derivatives have a certain protective effect on Hypoxia/Reoxygenation (H/R) induced H9C2 cell damage, with compound 22 having the best activity and effectively reducing cell apoptosis and necrosis. In vitro experimental data shows that compound 22 can significantly reduce the infarct size of rat myocardium and improve cardiac function after MI/R injury. In summary, compound 22 is a new potential cardioprotective agent that can promote angiogenesis and enhance antioxidant activity by activating ADCY5, CREB3l4, and VEGFA, thereby protecting myocardial cell apoptosis and necrosis induced by MI/R.


Asunto(s)
Alcaloides , Apoptosis , Diseño de Fármacos , Matrinas , Daño por Reperfusión Miocárdica , Quinolizinas , Ratas Sprague-Dawley , Alcaloides/farmacología , Alcaloides/química , Alcaloides/síntesis química , Animales , Quinolizinas/farmacología , Quinolizinas/síntesis química , Quinolizinas/química , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/patología , Ratas , Apoptosis/efectos de los fármacos , Masculino , Relación Estructura-Actividad , Estructura Molecular , Cardiotónicos/farmacología , Cardiotónicos/síntesis química , Cardiotónicos/química , Relación Dosis-Respuesta a Droga , Línea Celular , Neovascularización Fisiológica/efectos de los fármacos , Angiogénesis
8.
Heliyon ; 10(2): e24782, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38312676

RESUMEN

As a traditional Chinese herbal medicine, Cornu Cervi Degelatinatum (CCD) has the effect of warming the kidney to support yang, astringing, and stopping bleeding, and is used for spleen kidney yang deficient (SKYD). This experiment was to investigate the therapeutic effects of different processes of CCD on SKYD type ulcerative colitis (UC) rats and to explore its impact on the intestinal flora of rats. METHODS: ELISA was used to study the anti-inflammatory activity of Cornu Cervi Degelatinatum processed with water (WCCD) and Cornu Cervi Degelatinatum processed with vinegar (VCCD). 16SrRNA and transcriptome sequencing were used to detect the composition of rat intestinal flora and gene expression; RT-PCR and Western blot were used to verify the role of WCCD and VCCD in treating UC. RESULTS: WCCD and VCCD have therapeutic effects on UC, could reduce tissue damage. VCCD performed better in improving Bacteroidetes/Firmicutes ratios and species evenness and abundance; performed better in increasing the quantity of lactobacillus. VCCD simultaneously inhibit the intestinal inflammatory response through NCK2, PAK4, and JNK signaling pathways. CONCLUSIONS: WCCD and VCCD play a therapeutic role in UC by regulating the proportion of different flora in the intestinal flora. VCCD regulates the intestinal flora and inflammatory response by interfering with the NCK2, PAK4 and JNK signaling pathways.

9.
Eur J Nucl Med Mol Imaging ; 51(7): 2023-2035, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38376806

RESUMEN

Integrin receptor αvß3 and gastrin-releasing peptide receptor (GRPR) expression of tumors could be detected using PET imaging with radiolabeled Arg-Gly-Asp (RGD) and the antagonistic bombesin analog RM26, respectively. The purpose of this study was to investigate the dual receptor-targeting property of the heterodimer RGD-RM26-03 (denoted as LNC1015), demonstrate the tumor diagnostic value of [68Ga]Ga-LNC1015 in preclinical experiments, and evaluate its preliminary clinical feasibility. METHODS: LNC1015 was designed and synthesized by linking cyclic RGD and the RM26 peptide. Preclinical pharmacokinetics were detected in a PC3 xenograft model using microPET and biodistribution studies. The clinical feasibility of [68Ga]Ga-LNC1015 PET/CT was performed in patients with breast cancer, and the results were compared with those of 18F-fluorodeoxyglucose (FDG). RESULTS: [68Ga]Ga-LNC1015 had good stability in saline for at least 2 h, and favorable binding affinity and specificity were demonstrated in vitro and in vivo. The tumor uptake and retention of [68Ga]Ga-LNC1015 during PET imaging were improved compared with its monomeric counterparts [68Ga]Ga-RGD and [68Ga]Ga-RM26 at all the time points examined. In our initial clinical studies, the tumor uptake and tumor-to-background ratio (TBR) of primary and metastatic lesions in [68Ga]Ga-LNC1015 PET/CT were significantly higher than those in [18F]FDG PET/CT, resulting in high lesion detection rate and tumor delineation. CONCLUSION: The dual targeting radiotracer [68Ga]Ga-LNC1015 showed significantly improved tumor uptake and retention, as well as lower liver uptake than [68Ga]Ga-RGD and [68Ga]Ga-RM26 monomer. The first-in-human study showed high TBRs in patients, suggesting favorable pharmacokinetics and high clinical feasibility for PET/CT imaging of cancer.


Asunto(s)
Radioisótopos de Galio , Integrina alfaVbeta3 , Oligopéptidos , Receptores de Bombesina , Receptores de Bombesina/metabolismo , Humanos , Animales , Ratones , Femenino , Integrina alfaVbeta3/metabolismo , Oligopéptidos/farmacocinética , Oligopéptidos/química , Distribución Tisular , Masculino , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radioquímica , Persona de Mediana Edad , Línea Celular Tumoral , Trazadores Radiactivos , Radiofármacos/farmacocinética , Radiofármacos/síntesis química , Radiofármacos/química , Técnicas de Química Sintética , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo
10.
J Ethnopharmacol ; 321: 117508, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38065351

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Antler glue is a classic medicinal to enhance sexual function in traditional Chinese medicine (TCM), which was first recorded in Shen Nong Ben Cao Jing (Shennong's Classic of the Materia Medica). Vinegar-processing is a classic method of processing traditional Chinese medicine. The method of preparing antler glue by boiling antlers in vinegar and then concentrating them is recorded in Lei Gong Pao Zhi Lun (Master Lei's Discourse on Medicinal Processing). In modern times, the typical processing method of antler glue is water extraction and concentration. However, it is not clear whether there is a difference in the effect of these two processing methods on the chemical composition and pharmacological activity of antler glue. AIM OF THE STUDY: The Chinese Pharmacopoeia (2020) records that the processing method of antler glue is water extraction and concentration. But Lei Gong Pao Zhi Lun differs in Chinese Pharmacopoeia (2020), which records the processing method of vinegar extraction and concentration. The effect of the two processing methods on antler glue's chemical composition and pharmacological activity is unknown. So this study aimed to elucidate the difference between different processing methods on the chemical composition and the treatment effect on oligoasthenospermia of antler glue. MATERIALS AND METHODS: So the automatic amino acid analyzer is used to determine the amino acid content of two different processing methods of antler glue. Proteomics was performed to detect the protein components of two different processing methods of antler glue and analyze them. Cyclophosphamide-induced mice models of oligoasthenospermia were used to study the different pharmacological effects of antler glue in two different processing methods. An automatic sperm analyzer observed the quantity and quality of sperm in mice epididymis. Serum sex hormone testosterone (T), luteinizing hormone (LH) and follicle stimulating hormone (FSH) levels in mice were tested using the enzyme-linked immunosorbent assay (ELISA) kits. Hematoxylin-eosin (H&E) staining was used to analyze pathological alterations in mouse testicular tissue. The transcriptome has been used to reveal the potential mechanism of antler glue in treating oligoasthenospermia. Mitochondrial complex activity assay kits were used to assay the activity of mitochondrial respiratory chain complex I-V in mouse testicular tissue. Western blot was used to determine the expression of related proteins in mouse testicular tissue. RESULTS: Vinegar-processing can increase the alanine, proline, and glycine content in antler glue, reduce the length of protein peptides in antler glue, and produce a variety of unique proteins. Vinegar-processed antler glue (VAG) increased sperm density, sperm survival, sperm viability, and serum sex hormone levels in oligozoospermic mice. It reversed testicular damage caused by cyclophosphamide, and the effects were differently superior to those of water-processed antler glue (WAG). In addition, transcriptomics and related experiments have shown that VAG can increase the expression of Ndufa2, Uqcr11, Cox6b1, and Atp5i genes and proteins in mouse testis, thus promoting adenosine diphosphate (ATP) synthesis by increasing the activity of mitochondrial respiratory chain complexes I, III, IV and V. By promoting the oxidative phosphorylation process to produce more ATP, VAG can achieve the therapeutic effect of oligoasthenospermia. CONCLUSION: Vinegar-processing method can increase the content of active ingredients in antler glue. VAG increases ATP levels in the testes by promoting the process of oxidative phosphorylation to treat oligozoospermia.


Asunto(s)
Cuernos de Venado , Oligospermia , Humanos , Ratones , Masculino , Animales , Cuernos de Venado/química , Ácido Acético , Semen/química , Proteínas , Hormonas Esteroides Gonadales , Aminoácidos , Ciclofosfamida , Adenosina Trifosfato
11.
J Neuroinflammation ; 20(1): 290, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38042775

RESUMEN

Glial cell-mediated neuroinflammation and neuronal attrition are highly correlated with cognitive impairment in Alzheimer's disease. YKL-40 is a secreted astrocytic glycoprotein that serves as a diagnostic biomarker of Alzheimer's disease. High levels of YKL-40 are associated with either advanced Alzheimer's disease or the normal aging process. However, the functional role of YKL-40 in Alzheimer's disease development has not been firmly established. In a 5xFAD mouse model of Alzheimer's disease, we observed increased YKL-40 expression in the cerebrospinal fluid of 7-month-old mice and was correlated with activated astrocytes. In primary astrocytes, Aß1-42 upregulated YKL-40 in a dose-dependent manner and was correlated with PI3-K signaling pathway activation. Furthermore, primary neurons treated with YKL-40 and/or Aß1-42 resulted in significant synaptic degeneration, reduced dendritic complexity, and impaired electrical parameters. More importantly, astrocyte-specific knockout of YKL-40 over a period of 7 days in symptomatic 5xFAD mice could effectively reduce amyloid plaque deposition in multiple brain regions. This was also associated with attenuated glial activation, reduced neuronal attrition, and restored memory function. These biological phenotypes could be explained by enhanced uptake of Aß1-42 peptides, increased rate of Aß1-42 degradation and acidification of lysosomal compartment in YKL-40 knockout astrocytes. Our results provide new insights into the role of YKL-40 in Alzheimer's disease pathogenesis and demonstrate the potential of targeting this soluble biomarker to alleviate cognitive defects in symptomatic Alzheimer's disease patients.


Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Lactante , Ratones , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Astrocitos/metabolismo , Biomarcadores/metabolismo , Proteína 1 Similar a Quitinasa-3/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos
12.
J Ginseng Res ; 47(3): 408-419, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37252276

RESUMEN

Background: Ginsenoside compound K (CK), the main active metabolite in Panax ginseng, has shown good safety and bioavailability in clinical trials and exerts neuroprotective effects in cerebral ischemic stroke. However, its potential role in the prevention of cerebral ischemia/reperfusion (I/R) injury remains unclear. Our study aimed to investigate the molecular mechanism of ginsenoside CK against cerebral I/R injury. Methods: We used a combination of in vitro and in vivo models, including oxygen and glucose deprivation/reperfusion induced PC12 cell model and middle cerebral artery occlusion/reperfusion induced rat model, to mimic I/R injury. Intracellular oxygen consumption and extracellular acidification rate were analyzed by Seahorse multifunctional energy metabolism system; ATP production was detected by luciferase method. The number and size of mitochondria were analyzed by transmission electron microscopy and MitoTracker probe combined with confocal laser microscopy. The potential mechanisms of ginsenoside CK on mitochondrial dynamics and bioenergy were evaluated by RNA interference, pharmacological antagonism combined with co-immunoprecipitation analysis and phenotypic analysis. Results: Ginsenoside CK pretreatment could attenuate mitochondrial translocation of DRP1, mitophagy, mitochondrial apoptosis, and neuronal bioenergy imbalance against cerebral I/R injury in both in vitro and in vivo models. Our data also confirmed that ginsenoside CK administration could reduce the binding affinity of Mul1 and Mfn2 to inhibit the ubiquitination and degradation of Mfn2, thereby elevating the protein level of Mfn2 in cerebral I/R injury. Conclusion: These data provide evidence that ginsenoside CK may be a promising therapeutic agent against cerebral I/R injury via Mul1/Mfn2-mediated mitochondrial dynamics and bioenergy.

13.
Clin Oral Investig ; 27(6): 2495-2511, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37017757

RESUMEN

OBJECTIVES: This meta-analysis aimed to elucidate the effects of various acid etching patterns on the sensitivity of teeth and their clinical effectiveness following composite resin repair. MATERIALS AND METHODS: PubMed, Cochrane Library, Web of Science, and Embase databases were searched for relevant studies on the postoperative sensitivity (POS) of composite resin restorations after using different bonding systems. The retrieval was from the inception of the databases to August 13, 2022, with no filter of written language. Literature screening was conducted by two independent researchers. The Cochrane risk-of-bias assessment tool was adopted for quality evaluation, and Stata 15.0 for analysis. RESULTS: Twenty-five randomized controlled trials were included in the present study. Following resin composite restoration, 1309 restorations were bonded by self-etching (SE) adhesives, whereas 1271 restorations were bonded by total-etching (TE) adhesives. The meta-analyses showed that there is no evidence to prove the SE and TE will affect POS at present when measured using the modified United States Public Health Service (USPHS) criteria [RR = 1.00 (95% CI: 0.96, 1.04)], the World Dental Federation (FDI) [RR = 1.06 (95% CI: 0.98, 1.15)], or the visual analog scale (VAS) [SMD = 0.02 (95% CI: -0.15, 0.20)] scales. At a certain follow-up time, TE adhesives provide better outcomes in terms of color match, marginal staining, and marginal adaptation. In other words, TE adhesives have better esthetic results. CONCLUSIONS: The type of bonding technique (ER and SE) does not affect the risk and degree of POS in class I/II and class V restorations. Further research is required to verify whether these findings apply to different forms of composite resin restorations. CLINICAL RELEVANCE: Besides the fact that TE barely increase postoperative sensitivity, it also yields superior cosmetic results.


Asunto(s)
Resinas Compuestas , Cementos Dentales , Resinas Compuestas/uso terapéutico , Recubrimientos Dentinarios , Cementos de Resina , Restauración Dental Permanente/métodos , Grabado Ácido Dental/métodos , Estética Dental , Adaptación Marginal Dental
14.
Artículo en Inglés | MEDLINE | ID: mdl-36818231

RESUMEN

The herbal pairing of Huangqi and Dangshen (HD) is traditional Chinese herbal medicine and has been widely used in China, especially to treat myasthenia gravis (MG). However, the mechanism of HD on MG is unclear. Aim of the Study. This study aims to investigate HD's possible role in MG treatment. Materials and Methods. The TCMSP database was used to identify the active chemicals and their targets. The GeneCards, DisGeNET, and OMIM databases were used to search for MG-related targets. The STRING database was employed in order to identify the common PPI network targets. We next utilised Cytoscape 3.8.2 for target identification and the DAVID database for gene ontology (GO) function analysis as well as Encyclopaedia of Genomes (KEGG) pathway enrichment analysis on the selected targets. The AutoDock Vina software was used to test the affinity of essential components with the hub gene before concluding that the primary targets were corrected through molecular docking. Results. 41 active compounds were screened from HD, and the number of putative-identified target genes screened from HD was 112. There were 21 target genes that overlapped with the targets of MG, which were postulated to be potential treatment targets. Through further analysis, the results showed that the active compounds from HD (such as 7-methoxy-2-methylisoflavone, quercetin, luteolin, Kaempferol, and isorhamnetin) may achieve the purpose of treating MG by acting on some core targets and related pathways (such as EGFR, FOS, ESR2, MYC, ESR1, CASP3, and IL-6). Molecular docking findings demonstrated that these active molecules have a near-perfect ability to attach to the primary targets. Conclusion. Through network pharmacology, the findings in this study provide light on the coordinated action of several HD formula components, targets, and pathways. It provided a theoretical basis for further study of HD pharmacological action.

15.
Sci Total Environ ; 857(Pt 3): 159692, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36302417

RESUMEN

Drought is a complex and dynamic natural phenomenon. A single drought index can hardly reflect the multi-type characteristics of drought, and comprehensive drought indices that incorporate data from multiple sources have been proposed recently. In this study, an Optimized Comprehensive Drought Index (OCDI) was constructed by taking into account the lag time of meteorological drought, agricultural drought and hydrological drought. The Standardized Precipitation Evapotranspiration Index (SPEI), Vegetation Condition Index (VCI), and Water Storage Deficit Index (WSDI) represented the three types of droughts, respectively. Specifically, we used the Solar-induced Chlorophyll Fluorescence (SIF) to characterize the vegetation condition instead of the Normalized Difference Vegetation Index (NDVI). The application results of the proposed drought index in the middle reaches of Yellow River basin (MRYRB) showed that the lag time of different types of drought indices had seasonal differences, with a shorter lag time in summer (0-4 months) and a longer lag time in winter and spring (> 4 months). For typical drought events, the drought intensity and duration identified by OCDI were compatible with the drought evolution characteristics and consistent with the historical records, therefore, OCDI is more suitable for drought monitoring in the study area. Based on the monitoring results of the OCDI, the average number of droughts in the MRYRB was 16 times, with a duration of 2.8 months and an average drought intensity of 0.28 (at moderate drought grade). Drought times and intensity were higher in the northwestern part of the study area, and spring was a high-frequency period for drought occurrences.


Asunto(s)
Sequías , Ríos , Meteorología , Estaciones del Año , China
16.
Environ Sci Pollut Res Int ; 30(2): 4230-4244, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35965299

RESUMEN

As the primary source of carbon dioxide fixation, vegetation is critical to the carbon sink process. In this paper, the Net Primary Productivity (NPP) and the Gross Primary Productivity (GPP) were simulated using the Carnegie-Ames-Stanford Approach (CASA) model and the Vegetation Photosynthesis Model (VPM), respectively, and then the Potential Gross Primary Productivity (PGPP) and the GPP affected by human activities (AGPP) were simulated by combining Potential Net Primary Productivity (PNPP), and then the impact of climate change and human activities on GPP was assessed in the Heihe River Basin (HRB). The results showed that the GPP of grassland and Bare or Sparse Vegetation (BSV) exhibited a fluctuation rise, with increases of 0.709 gCm-2 a-1 and 0.115 gCm-2 a-1, respectively, whereas the GPP of cropland showed a fluctuation reduction, with a decline rate of -0.465 gCm-2 a-1. Climate change and human activity are both positive for vegetation growth, and human activity being the primary factor influencing GPP change. Human-dominated vegetation restoration accounted for 56.1% of the overall restoration area, with grassland GPP being the most visible response to human activities. The GPP changes in crop and grassland had a positive correlation with precipitation but a negative correlation with temperature among climate change factors, whereas the GPP changes in BSV had a negative correlation with both precipitation and temperature. Quantitative analyses of climate change and human activities' dynamic contributions to vegetation can give scientific and theoretical insight for dealing with global climate change.


Asunto(s)
Cambio Climático , Ecosistema , Humanos , Ríos , China , Actividades Humanas
17.
Front Med (Lausanne) ; 9: 1034315, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569154

RESUMEN

Peptide receptor radionuclide therapy (PRRT) has over the last two decades emerged as a very promising approach to treat neuroendocrine tumors (NETs) with rapidly expanding clinical applications. By chelating a radiometal to a somatostatin receptor (SSTR) ligand, radiation can be delivered to cancer cells with high precision. Unlike conventional external beam radiotherapy, PRRT utilizes primarily ß or α radiation derived from nuclear decay, which causes damage to cancer cells in the immediate proximity by irreversible direct or indirect ionization of the cells' DNA, which induces apoptosis. In addition, to avoid damage to surrounding normal cells, PRRT privileges the use of radionuclides that have little penetrating and more energetic (and thus more ionizing) radiations. To date, the most frequently radioisotopes are ß- emitters, particularly Yttrium-90 (90Y) and Lutetium-177 (177Lu), labeled SSTR agonists. Current development of SSTR-targeting is triggering the shift from using SSTR agonists to antagonists for PRRT. Furthermore, targeted α-particle therapy (TAT), has attracted special attention for the treatment of tumors and offers an improved therapeutic option for patients resistant to conventional treatments or even beta-irradiation treatment. Due to its short range and high linear energy transfer (LET), α-particles significantly damage the targeted cancer cells while causing minimal cytotoxicity toward surrounding normal tissue. Actinium-225 (225Ac) has been developed into potent targeting drug constructs including somatostatin-receptor-based radiopharmaceuticals and is in early clinical use against multiple neuroendocrine tumor types. In this article, we give a review of preclinical and clinical applications of 225Ac-PRRT in NETs, discuss the strengths and challenges of 225Ac complexes being used in PRRT; and envision the prospect of 225Ac-PRRT as a future alternative in the treatment of NETs.

18.
Front Oncol ; 12: 910728, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36408158

RESUMEN

The glycoprotein YKL-40 has been well studied as a serum biomarker of prognosis and disease status in glioblastoma. YKL-40 is a chitinase-like protein with defective chitinase activity that plays an important role in promoting cell proliferation, migration, and metastasis in glioblastoma multiforme (GBM). The short variant (SV) of YKL-40, generated by an alternative splicing event that splices out exon 8, was reported in the early developing human musculoskeletal system, although its role in GBM is still unknown. Our results showed that individual glioblastoma cell lines displayed increased expression of the short variant of YKL-40 after low serum treatment. In addition, unlike the full-length (FL) version, which was localized to all cell compartments, the short isoform could not be secreted and was localized only to the cytoplasm. Functionally, FL YKL-40 promoted cell proliferation and migration, whereas SV YKL-40 suppressed them. Transcriptome analysis revealed that these opposing roles of the two isoforms may be modulated by differentially regulating several oncogenic-related pathways, including p53, the G2/M checkpoint, and MYC-related signaling. This study may provide new ideas for the development of targeted anti-YKL-40 therapy in GBM treatment.

19.
Theranostics ; 12(16): 7180-7190, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276644

RESUMEN

To enhance tumor uptake and retention, we designed and developed bi-specific heterodimeric radiotracers targeting both FAP and αvß3, [68Ga]Ga-FAPI-RGD. The present study aimed to evaluate the specificity, pharmacokinetics, and dosimetry of [68Ga]Ga-FAPI-RGD by preclinical and preliminary clinical studies. Methods: FAPI-RGD was designed and synthesized with the quinoline-based FAPI-02 and the cyclic RGDfK peptide. Preclinical pharmacokinetics were determined in Panc02 xenograft model using microPET and biodistribution experiments. The safety and effective dosimetry of [68Ga]Ga-FAPI-RGD was evaluated in 6 cancer patients, and compared with 2-[18F]FDG imaging. Results: The [68Ga]Ga-FAPI-RGD had good stability in saline for at least 4 h, and showed favorable binding affinity and specificity in vitro and in vivo. Compared to [68Ga]Ga-FAPI-02 and [68Ga]Ga-RGDfK, the tumor uptake and retention of [68Ga]Ga-FAPI-RGD were very much enhanced than its monomeric counterparts at all the time points examined by microPET imaging. A total of 6 patients with various malignant tumors were prospectively enrolled. The effective dose of [68Ga]Ga-FAPI-RGD was 1.94E-02 mSv/MBq. The biodistribution of [68Ga]Ga-FAPI-RGD from 0 to 2 h after injection demonstrated rapid and high tumor uptake, prolonged tumor retention, and high tumor-to-background ratios (TBRs) which further increased over time. No significant difference in mean SUVmax of [68Ga]Ga-FAPI-RGD and 2-[18F]FDG was present in primary tumors (8.9±3.2 vs. 10.3 ± 6.9; p = 0.459). Conclusion: The dual targeting PET tracer [68Ga]Ga-FAPI-RGD showed significantly improved tumor uptake and retention, as well as cleaner background over 68Ga-labeled FAPI and RGD monospecific tracers. The first-in-human biodistribution study showed high TBRs over time, suggesting high diagnostic performance and favorable tracer kinetics for potential therapeutic applications.


Asunto(s)
Neoplasias , Quinolinas , Humanos , Radioisótopos de Galio , Distribución Tisular , Fluorodesoxiglucosa F18 , Radiometría , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Péptidos Cíclicos/metabolismo , Tomografía de Emisión de Positrones/métodos , Oligopéptidos/metabolismo
20.
Mol Clin Oncol ; 17(4): 149, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36157320

RESUMEN

It has been reported that >90% of women with cervical cancer are human papillomavirus (HPV)-positive, with HPV16 and 18 being the most 'highest-risk' HPV genotypes. However, in numerous women, HPV infection will not progress to cervical cancer. Accordingly, more appropriate screening markers need to be explored. In the present study, genome-wide DNA methylomic differences between cervical cancer tissues with HPV-16 or HPV-18 infection and normal cervical tissues were detected by using an Illumina Human Methylation 850 K BeadChip. The Gene Ontology functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted in order to define the nearest neighbouring genes of differentiated methylation sites. Moreover, differentiated methylation sites were verified using pyrosequencing. KEGG analyses suggested that the focal adhesion pathway and pathways in cancer were highly enriched. Bioinformatics and statistical analysis indicated that the nine CpG loci had the most significant differences amongst the genes involved in these pathways. Among these, six CpG sites in the CHRM2, LAMA4, COL11A1, FGF10, IGF1 and TEK genes were highly associated with HPV-16-positive cervical cancer, as validated using pyrophosphate sequencing. Additionally, 10 significantly different CpG sites of the HPV-18-positive group were selected and verified in The Cancer Genome Atlas, indicating their possible diagnostic roles in cervical cancer development and determination. In addition, eight hypermethylated CpG island sites that were associated with HPV-16-positive cervical cancer tissues and 10 hypermethylated CpG island sites that were associated with HPV-18-positive cervical cancer tissues were identified, highlighting their potential roles in screening and evaluating targeted therapy efficacy and prognosis. The main focus of the present study was to identify the genetic variability in HPV-16- and HPV-18-positive samples and to elucidate possible methylation biomarkers in HPV-positive women with a risk of developing cervical cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA