Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Poult Sci ; 103(4): 103490, 2024 Apr.
Article En | MEDLINE | ID: mdl-38387287

Riemerella anatipestifer (R. anatipestifer) is a highly pathogenic and complex serotypes waterfowl pathogen with inherent resistance to multiple antibiotics. This study was aimed to investigate the antibiotic resistance characteristics and genomic features of R. anatipestifer isolates in Anhui Province, China in 2023. A total of 287 cases were analysed from duck farms and goose farms, and the R. anatipestifer isolates were subjected to drug resistance tests for 30 antimicrobials. Whole genome sequencing (WGS) and bioinformatics analysis were performed on the bacterial genomes, targeting the ß-lactam resistance genes. The results showed that a total of 74 isolates of R. anatipestifer were isolated from 287 cases, with a prevalence of 25.8%. The antimicrobial susceptibility testing (AST) revealed that all the 74 isolates were resistant to multiple drugs, ranging from 13 to 26 kinds of drugs. Notably, these isolates showed significant resistance to aminoglycosides and macrolides, which are also commonly used in clinical practices. Data revealed the presence of several ß-lactamase-related genes among the isolates, including a novel blaRASA-1 variant (16.2%), the class A extended-spectrum ß-lactamase blaRAA-1 (12.2%), and a blaOXA-209 variant (98.6%). Functional analysis of the variants blaRASA-1 and blaOXA-209 showed that the blaRASA-1 variant exhibited activity against various ß-lactam antibiotics while their occurrence in R. anatipestifer were not common. The blaOXA-209 variant, on the other hand, did not perform any ß-lactam antibiotic resistance. Furthermore, we observed that blaRAA-1 could undergo horizontal transmission among different bacteria via the insertion sequence IS982. In conclusion, this study delves into the high prevalence of R. anatipestifer infection in waterfowl in Anhui, China. The isolated strains exhibit severe drug resistance issues, closely associated with the prevalence of antibiotic resistance genes (ARG). Additionally, our research investigates the ß-lactam antibiotic resistance mechanism in R. anatipestifer.


Anti-Bacterial Agents , Riemerella , Animals , Anti-Bacterial Agents/pharmacology , Chickens , Riemerella/genetics , Monobactams , beta-Lactam Resistance , beta Lactam Antibiotics , beta-Lactamases , Ducks/microbiology
2.
Angew Chem Int Ed Engl ; 62(46): e202310741, 2023 Nov 13.
Article En | MEDLINE | ID: mdl-37706280

Removal of trace impurities for natural gas purification coupled with waste gas conversion is highly desired in industry. We here report a type of porous ionic liquids (PILs) that can realize the continuous flow separation of CH4 /CO2 /H2 S and the conversion of the captured H2 S to useful products. The PILs are synthesized through a step-by-step surface modification of ionic liquids (ILs) onto UiO-66-OH nanocrystals. The introduction of free tertiary amine groups on the nanocrystal surface endows these PILs with an exceptional ability to enrich H2 S from CO2 and CH4 with impressive selectivity, while the permanent pores of UiO-66-OH act as containers to store an exceptionally higher amount of the selectively captured H2 S than the corresponding nonporous ILs. Simultaneously, the tertiary amines as dual functional moieties offer effective catalytic sites for the conversion of the H2 S stored in PILs into 3-mercaptoisobutyric acid, a key intermediate required for the synthesis of Captopril (an antihypertensive drug). Molecular dynamics, density functional theory calculations and Grand Canonical Monte Carlo simulations help understand both the mechanisms of separation and catalysis performance, confirming that the tertiary amines as well as the permanent pores in UiO-66-OH play vital roles in the whole procedure.

...