Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
3.
Front Pharmacol ; 13: 931600, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36133809

RESUMEN

Chronic itch severely reduces the quality of life of patients. Electroacupuncture (EA) is widely used to treat chronic itch. However, the underlying mechanism of this therapeutic action of EA is largely unknown. Cannabinoid CB1 receptors in the ventrolateral periaqueductal gray (vlPAG) mediate the analgesic effect of EA. Using a dry skin-induced itch model in mice, we determined whether EA treatment reduces chronic itch via CB1 receptors in the vlPAG. We showed that the optimal inhibitory effect of EA on chronic itch was achieved at the high frequency and high intensity (100 Hz and 3 mA) at "Quchi" (LI11) and "Hegu" (LI14) acupoints, which are located in the same spinal dermatome as the cervical skin lesions. EA reversed the increased expression of CB1 receptors in the vlPAG and decreased the concentration of 5-hydroxytryptamine (5-HT) in the medulla oblongata and the expression of gastrin-releasing peptide receptors (GRPR) in the cervical spinal cord. Furthermore, knockout of CB1 receptors on GABAergic neurons in the vlPAG attenuated scratching behavior and the 5-HT concentration in the medulla oblongata. In contrast, knockout of CB1 receptors on glutamatergic neurons in the vlPAG blocked the antipruritic effects of EA and the inhibitory effect of EA on the 5-HT concentration in the medulla oblongata. Our findings suggest that EA treatment reduces chronic itch by activation of CB1 receptors on glutamatergic neurons and inhibition of CB1 receptors on GABAergic neurons in the vlPAG, thereby inhibiting the 5-HT release from the medulla oblongata to GRPR-expressing neurons in the spinal cord. Our findings suggest that EA attenuates chronic itch via activating CB1 receptors expressed on glutamatergic neurons and downregulating CB1 receptors on GABAergic neurons in the vlPAG, leading to the reduction in 5-HT release in the rostroventral medulla and GRPR signaling in the spinal cord. Our study not only advances our understanding of the mechanisms of the therapeutic effect of EA on chronic itch but also guides the selection of optimal parameters and acupoints of EA for treating chronic itch.

4.
Cancers (Basel) ; 14(4)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35205613

RESUMEN

In recent years, systematic treatment has made great progress in genitourinary tumors. However, some patients develop resistance to the treatments, resulting in an increase in mortality. Circular RNAs (circRNAs) form a class of non-coding RNAs with high stability and significant clinical relevance. Accumulating evidence indicates that circRNAs play a vital role in cancer development and tumor chemotherapy resistance. This review summarizes the molecular and cellular mechanisms of drug resistance mediated by circRNAs to common drugs used in the treatment of genitourinary tumors. Several circRNAs were identified to regulate the responsiveness to systemic treatments in genitourinary tumors, including chemotherapies such as cisplatin and targeted therapies such as enzalutamide. Canonically, cicrRNAs participate in the competing endogenous RNA (ceRNA) network, or in some cases directly interact with proteins, regulate downstream pathways, and even some circRNAs have the potential to produce proteins or polypeptides. Several cellular mechanisms were involved in circRNA-dependent drug resistance, including autophagy, cancer stem cells, epithelial-mesenchymal transition, and exosomes. The potential clinical prospect of circRNAs in regulating tumor drug resistance was also discussed.

5.
Front Mol Biosci ; 8: 626328, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124141

RESUMEN

Dysregulation of transcription factors contributes to the carcinogenesis and progression of cancers. However, their roles in clear cell renal cell carcinoma remain largely unknown. This study aimed to evaluate the clinical significance of TFs and investigate their potential molecular mechanisms in ccRCC. Data were accessed from the cancer genome atlas kidney clear cell carcinoma cohort. Bioinformatics algorithm was used in copy number alterations mutations, and differentially expressed TFs' analysis. Univariate and multivariate Cox regression analyses were performed to identify clinically significant TFs and construct a six-TF prognostic panel. TFs' expression was validated in human tissues. Gene set enrichment analysis (GSEA) was utilized to find enriched cancer hallmark pathways. Functional experiments were conducted to verify the cancer-promoting effect of BARX homeobox 1 (BARX1) and distal-less homeobox 4 (DLX4) in ccRCC, and Western blot was performed to explore their downstream pathways. As for results, many CNAs and mutations were identified in transcription factor genes. TFs were differentially expressed in ccRCC. An applicable predictive panel of six-TF genes was constructed to predict the overall survival for ccRCC patients, and its diagnostic efficiency was evaluated by the area under the curve (AUC). BARX1 and DLX4 were associated with poor prognosis, and they could promote the proliferation and migration of ccRCC. In conclusion, the six-TF panel can be used as a prognostic biomarker for ccRCC patients. BARX1 and DLX4 play oncogenic roles in ccRCC via promoting proliferation and epithelial-mesenchymal transition. They have the potential to be novel therapeutic targets for ccRCC.

6.
J Cell Physiol ; 235(3): 2113-2128, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31432508

RESUMEN

Dysregulation of the epigenetic status of long noncoding RNAs (lncRNAs) has been linked to diverse human diseases including human cancers. However, the landscape of the whole-genome methylation profile of lncRNAs and the precise roles of these lncRNAs remain elusive in renal cell carcinoma (RCC). We first examined lncRNA expression profiles in RCC tissues and corresponding adjacent normal tissues (NTs) to identify the lncRNA signature of RCC, then lncRNA Promoter Microarray was performed to depict the whole-genome methylation profile of lncRNAs in RCC. Combined analysis of the lncRNAs expression profiles and lncRNAs Promoter Microarray identified a series of downregulated lncRNAs with hypermethylated promoter regions, including NR_023387. Quantitative real-time polymerase chain reaction (RT-PCR) implied that NR_023387 was significantly downregulated in RCC tissues and cell lines, and lower expression of NR_023387 was correlated with shorter overall survival. Methylation-specific PCR, MassARRAY, and demethylation drug treatment indicated that hypermethylation in the NR_023387 promoter contributed to its silencing in RCC. Besides, HNF4A regulated the expression of NR_023387 via transcriptional activation. Functional experiments demonstrated NR_023387 exerted tumor-suppressive roles in RCC via suppressing the proliferation, migration, invasion, tumor growth, and metastasis of RCC. Furthermore, we identified MGP as a putative downstream molecule of NR_023387, which promoted the epithelial-mesenchymal transition of RCC cells. Our study provides the first whole-genome lncRNA methylation profile in RCC. Our combined analysis identifies a tumor-suppressive and prognosis-related lncRNA NR_023387, which is silenced in RCC via promoter hypermethylation and HNF4A deficiency, and may exert its tumor-suppressive roles by downregulating the oncogenic MGP.


Asunto(s)
Carcinoma de Células Renales/genética , Metilación de ADN/genética , Factor Nuclear 4 del Hepatocito/genética , Neoplasias Renales/genética , Regiones Promotoras Genéticas/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación hacia Abajo/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Pronóstico , ARN Largo no Codificante/genética
7.
J Exp Clin Cancer Res ; 34: 21, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25887782

RESUMEN

BACKGROUND: Huachansu (HCS), a class of toxic steroids extracted from toad venom, which has been shown to be a valuable anticancer drug in many kinds of cancers. However, the effect of HCS on bladder cancer has not been elucidated. In this study, we focused on the antitumor activities and related mechanisms of HCS on bladder cancer in vitro and in vivo. METHODS: Cell viability of T24, EJ, RT-4, SV-HUC-1 cells after HCS treatment was measured by MTS, whereas the changes of cell morphology were observed by transmission electron microscopy. The early apoptosis induced by HCS was evaluated by flow cytometry, and the expression level of apoptosis-related molecules (Bax, Bcl-2, XIAP, PARP, cleaved-Caspases 3, 8, 9) was detected using Western blot. We then evaluated the impact of HCS on the expression of Fas/Fasl, TNF- alpha/TNFR1, and the activation of NF-Kappa B pathway, and furthermore the effect of these pathways in HCS induced-apoptosis were also detected. At last, xenograft tumor in nude mice was used to further investigate the antitumor effect of HCS in vivo. RESULTS: Our results showed that HCS could efficiently inhibit proliferation and induce apoptosis in human bladder cancer cell lines. The expression of Fas, Fasl, TNF- alpha were all elevated at both mRNA and protein level after HCS treatment. Furthermore, down regulation of TNF- alpha, TNFR1, Fas or inhibition of Fas/Fasl interaction decreased the relative number of death cells induced by HCS. In vivo, HCS treatment significantly suppressed tumor growth and induced apoptosis in xenografts tumor in nude mice. CONCLUSIONS: HCS could efficiently inhibit proliferation and induce apoptosis in human bladder cancer cells in vitro and in vivo, which is largely mediated by Fas/Fasl and TNF- alpha/TNFR1 pathway.


Asunto(s)
Venenos de Anfibios/farmacología , Proteína Ligando Fas/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Receptor fas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , FN-kappa B/metabolismo , Neoplasias de la Vejiga Urinaria/patología
8.
Front Med ; 8(4): 456-63, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25363395

RESUMEN

microRNAs (miRNAs) have played a key role in human tumorigenesis, tumor progression, and metastasis. On the one hand, miRNAs are aberrantly expressed in many types of human cancer; on the other hand, miRNAs can function as tumor suppressors or oncogenes that target many cancer-related genes. This study aimed to investigate the effects of miRNA-200c (miR-200c) on the biological behavior and mechanism of proliferation, migration, and invasion in the prostate cancer cell line Du145. In this study, Du145 cells were transfected with miR-200c mimics or negative control miR-NC by using an X-tremeGENE siRNA transfection reagent. The relative expression of miR-200c was measured by RT-PCR. The proliferation, migration, and invasion abilities of Du145 cells were detected by CCK8 assays, migration assays and invasion assays, respectively. The expressions of ZEB1, E-cadherin, and vimentin were observed by western blot. Results showed that DU145 cells exhibited a high expression of miR-200c compared with immortalized normal prostate epithelial cell RWPE-1. Du145 cells were then transfected with miR-200c mimics and displayed lower abilities of proliferation, migration, and invasion than those transfected with the negative control. The protein levels of ZEB1 and vimentin were expressed at a low extent in Du145 cells, which were transfected with miR-200c mimics; by contrast, E-cadherin was highly expressed. Hence, miR-200c could significantly inhibit the proliferation of the prostate cancer cell line Du145; likewise, miR-200c could inhibit migration and invasion by epithelial-mesenchymal transition.


Asunto(s)
Movimiento Celular/genética , MicroARNs/genética , Neoplasias de la Próstata/genética , Western Blotting , Cadherinas/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Invasividad Neoplásica , Neoplasias de la Próstata/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Transfección , Vimentina/metabolismo
9.
Mol Cancer ; 13: 8, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24423412

RESUMEN

BACKGROUND: Accumulating evidence suggests a tumor suppressive role for miR-34a in human carcinogenesis. However, its precise biological role remains largely elusive. This study aimed to reveal the association of the miR-34a expression and its modulation of sensitivity to cisplatin in muscle-invasive bladder cancer (MIBC). METHODS: miR-34a expression in MIBC cell lines and patient tissues was investigated using qPCR. The methylation analysis of miR-34a promoter region was performed by MassARRAY. Synthetic short single or double stranded RNA oligonucleotides and lentiviral vector were used to regulate miR-34a expression in MIBC cells to investigate its function in vitro and in vivo. RESULTS: miR-34a expression was frequently decreased in MIBC tissues and cell lines through promoter hypermethylation while it was epigenetically increased in MIBC cells following cisplatin treatment. Increased miR-34a expression significantly sensitized MIBC cells to cisplatin and inhibited the tumorigenicity and proliferation of cancer cells in vitro and in vivo. Furthermore, we identified CD44 as being targeted by miR-34a in MIBC cells following cisplatin treatment, and increased CD44 expression could efficiently reverse the effect of miR-34a on MIBC cell proliferation, colongenic potential and chemosensitivity. CONCLUSIONS: Cisplatin-based chemotherapy induced demethylation of miR-34a promoter and increased miR-34a expression, which in turn sensitized MIBC cells to cisplatin and decreased the tumorigenicity and proliferation of cancer cells that by reducing the production of CD44.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Células Transicionales/genética , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , MicroARNs/genética , Neoplasias de la Vejiga Urinaria/genética , Animales , Carcinoma de Células Transicionales/tratamiento farmacológico , Carcinoma de Células Transicionales/metabolismo , Línea Celular Tumoral , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Humanos , Receptores de Hialuranos/biosíntesis , Ratones , Ratones Desnudos , Regiones Promotoras Genéticas/efectos de los fármacos , Transfección , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
10.
J Exp Clin Cancer Res ; 32: 101, 2013 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-24314030

RESUMEN

BACKGROUND: Recently, leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1), a negative regulator of EGFR, was discovered is a novel agent for suppressing bladder cancer. The aim of this study was to investigate the impact of LRIG1 on the biological features of aggressive bladder cancer cells and the possible mechanisms of enhanced apoptosis induced by upregulation of LRIG1. METHODS: In this study, we examined the mRNA and protein expression of LRIG1 and EGFR in bladder cancers and normal bladder. Meanwhile, we overexpressed LRIG1 with adenovirus vector in T24/5637 bladder cancer cell lines, and we used real time-PCR, western blot, and co-immunoprecipitation analysis in order to examine the effects of LRIG1 gene on EGFR. Furthermore, we evaluate the impact of LRIG1 gene on the function of human bladder cancer cells and EGFR signaling. RESULTS: The expression of LRIG1 was decreased, while the expression of EGFR was increased in the majority of bladder cancer, and the ratio of EGFR/LRIG1 was increased in tumors versus normal tissue. We found that upregulation of LRIG1 induced cell apoptosis and cell growth inhibition, and further reversed invasion in bladder cancer cell lines in vitro by inhibiting phosphorylation of downstream MAPK and AKT signaling pathway. CONCLUSION: Taken together, our findings provide us with an insight into LRIG1 function, and we conclude that LRIG1 evolved in bladder cancer as a rare feedback negative attenuator of EGFR, thus could offer a novel therapeutic target to treat patients with bladder cancer.


Asunto(s)
Receptores ErbB/metabolismo , Glicoproteínas de Membrana/biosíntesis , Glicoproteínas de Membrana/genética , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/terapia , Apoptosis/fisiología , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Receptores ErbB/genética , Terapia Genética , Humanos , Pronóstico , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Transducción de Señal , Transfección , Células Tumorales Cultivadas , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...