Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nutr Metab Cardiovasc Dis ; 34(7): 1649-1659, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38749785

RESUMEN

BACKGROUND AND AIMS: This study aimed to explore potential hub genes and pathways of plaque vulnerability and to investigate possible therapeutic targets for acute coronary syndrome (ACS). METHODS AND RESULTS: Four microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs), weighted gene coexpression networks (WGCNA) and immune cell infiltration analysis (IIA) were used to identify the genes for plaque vulnerability. Then, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, Disease Ontology, Gene Ontology annotation and protein-protein interaction (PPI) network analyses were performed to explore the hub genes. Random forest and artificial neural networks were constructed for validation. Furthermore, the CMap and Herb databases were employed to explore possible therapeutic targets. A total of 168 DEGs with an adjusted P < 0.05 and approximately 1974 IIA genes were identified in GSE62646. Three modules were detected and associated with CAD-Class, including 891 genes that can be found in GSE90074. After removing duplicates, 114 hub genes were used for functional analysis. GO functions identified 157 items, and 6 pathways were enriched for the KEGG pathway at adjusted P < 0.05 (false discovery rate, FDR set at < 0.05). Random forest and artificial neural network models were built based on the GSE48060 and GSE34822 datasets, respectively, to validate the previous hub genes. Five genes (GZMA, GZMB, KLRB1, KLRD1 and TRPM6) were selected, and only two of them (GZMA and GZMB) were screened as therapeutic targets in the CMap and Herb databases. CONCLUSION: We performed a comprehensive analysis and validated GZMA and GZMB as a target for plaque vulnerability, which provides a therapeutic strategy for the prevention of ACS. However, whether it can be used as a predictor in blood samples requires further experimental verification.


Asunto(s)
Biología Computacional , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Placa Aterosclerótica , Mapas de Interacción de Proteínas , Humanos , Síndrome Coronario Agudo/genética , Síndrome Coronario Agudo/terapia , Redes Neurales de la Computación , Rotura Espontánea , Predisposición Genética a la Enfermedad , Transducción de Señal , Regulación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Transcriptoma , Terapia Molecular Dirigida , Marcadores Genéticos , Fenotipo , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/terapia
2.
Arthritis Res Ther ; 26(1): 88, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632649

RESUMEN

BACKGROUND: The association between osteoarthritis (OA) and hypertension is a subject of ongoing debate in observational research, and the underlying causal relationship between them remains elusive. METHODS: This study retrospectively included 24,871 participants in the National Health and Nutrition Examination Survey (NHANES) from 2013 to 2020. Weighted logistic regression was performed to investigate the connection between OA and hypertension. Additionally, Mendelian randomization (MR) analysis was conducted to explore the potential causal relationship between OA and hypertension. RESULTS: In the NHANES data, after adjusting for multiple confounding factors, there was no significant relationship between OA and hypertension (OR 1.30, 95% CI, 0.97-1.73, P = 0.089). However, among males, OA appeared to be associated with a higher risk of hypertension (OR 2.25, 95% CI, 1.17-4.32, P = 0.019). Furthermore, MR results indicate no relationship between multiple OA phenotypes and hypertension: knee OA (IVW, OR 1.024, 95% CI: 0.931-1.126, P = 0.626), hip OA (IVW, OR 0.990, 95% CI: 0.941-1.042, P = 0.704), knee or hip OA (IVW, OR 1.005, 95% CI: 0.915-1.105, P = 0.911), and OA from UK Biobank (IVW, OR 0.796, 95% CI: 0.233-2.714, P = 0.715). Importantly, these findings remained consistent across different genders and in reverse MR. CONCLUSIONS: Our study found that OA patients had a higher risk of hypertension only among males in the observational study. However, MR analysis did not uncover any causal relationship between OA and hypertension.


Asunto(s)
Hipertensión , Osteoartritis de la Cadera , Humanos , Femenino , Masculino , Encuestas Nutricionales , Análisis de la Aleatorización Mendeliana , Estudios Retrospectivos , Estudio de Asociación del Genoma Completo
3.
Acta Pharmacol Sin ; 43(8): 2081-2093, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34937917

RESUMEN

Acute kidney injury (AKI) with maladaptive tubular repair leads to renal fibrosis and progresses to chronic kidney disease (CKD). At present, there is no curative drug to interrupt AKI-to-CKD progression. The nuclear factor of the activated T cell (NFAT) family was initially identified as a transcription factor expressed in most immune cells and involved in the transcription of cytokine genes and other genes critical for the immune response. NFAT2 is also expressed in renal tubular epithelial cells (RTECs) and podocytes and plays an important regulatory role in the kidney. In this study, we investigated the renoprotective effect of 11R-VIVIT, a peptide inhibitor of NFAT, on renal fibrosis in the AKI-to-CKD transition and the underlying mechanisms. We first examined human renal biopsy tissues and found that the expression of NFAT2 was significantly increased in RTECs in patients with severe renal fibrosis. We then established a mouse model of AKI-to-CKD transition using bilateral ischemia-reperfusion injury (Bi-IRI). The mice were treated with 11R-VIVIT (5 mg/kg, i.p.) on Days 1, 3, 10, 17 and 24 after Bi-IRI. We showed that the expression of NFAT2 was markedly increased in RTECs in the AKI-to-CKD transition. 11R-VIVIT administration significantly inhibited the nuclear translocation of NFAT2 in RTECs, decreased the levels of serum creatinine and blood urea nitrogen, and attenuated renal tubulointerstitial fibrosis but had no toxic side effects on the heart and liver. In addition, we showed that 11R-VIVIT administration alleviated RTEC apoptosis after Bi-IRI. Consistently, preapplication of 11R-VIVIT (100 nM) and transfection with NFAT2-targeted siRNA markedly suppressed TGFß-induced HK-2 cell apoptosis in vitro. In conclusion, 11R-VIVIT administration inhibits IRI-induced NFAT2 activation and prevents AKI-to-CKD progression. Inhibiting NFAT2 may be a promising new therapeutic strategy for preventing renal fibrosis after IR-AKI.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Daño por Reperfusión , Lesión Renal Aguda/metabolismo , Animales , Fibrosis , Humanos , Isquemia/metabolismo , Riñón/patología , Ratones , Ratones Endogámicos C57BL , Insuficiencia Renal Crónica/metabolismo , Reperfusión , Daño por Reperfusión/complicaciones , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...