Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38203765

RESUMEN

Classical swine fever virus (CSFV) is a highly contagious pathogen causing significant economic losses in the swine industry. Conventional inactivated or attenuated live vaccines for classical swine fever (CSF) are effective but face biosafety concerns and cannot distinguish vaccinated animals from those infected with the field virus, complicating CSF eradication efforts. It is noteworthy that nanoparticle (NP)-based vaccines resemble natural viruses in size and antigen structure, and offer an alternative tool to circumvent these limitations. In this study, we developed an innovative vaccine delivery scaffold utilizing self-assembled mi3 NPs, which form stable structures carrying the CSFV E2 glycoprotein. The expressed yeast E2-fused protein (E2-mi3 NPs) exhibited robust thermostability (25 to 70 °C) and long-term storage stability at room temperature (25 °C). Interestingly, E2-mi3 NPs made with this technology elicited enhanced antigen uptake by RAW264.7 cells. In a rabbit model, the E2-mi3 NP vaccine against CSFV markedly increased CSFV-specific neutralizing antibody titers. Importantly, it conferred complete protection in rabbits challenged with the C-strain of CSFV. Furthermore, we also found that the E2-mi3 NP vaccines triggered stronger cellular (T-lymphocyte proliferation, CD8+ T-lymphocytes, IFN-γ, IL-2, and IL-12p70) and humoral (CSFV-specific neutralizing antibodies, CD4+ T-lymphocytes, and IL-4) immune responses in pigs than the E2 vaccines. To sum up, these structure-based, self-assembled mi3 NPs provide valuable insights for novel antiviral strategies against the constantly infectious agents.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Lagomorpha , Nanopartículas , Animales , Conejos , Porcinos , Nanovacunas , Peste Porcina Clásica/prevención & control , Vacunas Atenuadas , Proteínas Fúngicas
2.
Heliyon ; 9(9): e19428, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37674845

RESUMEN

Lung fibroblasts are the major components in the connective tissue of the pulmonary interstitium and play essential roles in the developing of postnatal lung, synthesizing the extracellular matrix and maintaining the integrity of the lung architecture. Fibroblasts are activated in various disease conditions and exhibit functional heterogeneities according to their origin, spatial location, activated state and microenvironment. In recent years, advances in technology have enabled researchers to identify fibroblast subpopulations in both mouse and human. Here, we discuss pulmonary fibroblast heterogeneity, focusing on the developing, healthy and pathological lung conditions. We firstly review the expression profiles of fibroblasts during lung development, and then consider fibroblast diversity according to different anatomical sites of lung architecture. Subsequently, we discuss fibroblast heterogeneity in genetic lineage. Finally, we focus on how fibroblast heterogeneity may shed light on different pathological lung conditions such as fibrotic diseases, infectious diseases including COVID-19, and lung cancers. We emphasize the importance of comparative studies to illuminate the overlapping characteristics, expression profiles and signaling pathways of the fibroblast subpopulations across disease conditions, a better characterization of the functional complexity rather than the expression of a particular gene may have important therapeutic applications.

3.
Nanomaterials (Basel) ; 12(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36432220

RESUMEN

The successful development of foot-and-mouth disease virus-like particles (FMD-VLPs) has opened a new direction for researching a novel subunit vaccine for foot-and-mouth disease (FMD). Therefore, it is urgent to develop an adjuvant that is highly effective and safe to facilitate a better immune response to be pair with the FMD-VLP vaccine. In this research, we prepared a new nano-emulsion adjuvant based on squalane (SNA) containing CpG using the pseudo-ternary phase diagram method and the phase transformation method. The SNA consisted of Span85, Tween60, squalane, polyethene glycol-400 (PEG400) and CpG aqueous solution. The average particle diameter of the SNA was about 95 nm, and it exhibited good resistance to centrifugation, thermal stability, and biocompatibility. Then, SNA was emulsified as an adjuvant to prepare foot-and-mouth disease virus-like particles vaccine, BALB/c mice and guinea pigs were immunized, and we evaluated the immunization effect. The immunization results in mice showed that the SNA-VLPs vaccine significantly increased specific antibody levels in mice within 4 weeks, including higher levels of IgG1 and IgG2a. In addition, it increased the levels of IFN-γ and IL-1ß in the immune serum of mice. Meanwhile, guinea pig-specific and neutralizing antibodies were considerably increased within 4 weeks when SNA was used as an adjuvant, thereby facilitating the proliferation of splenic lymphocytes. More importantly, in guinea pigs immunized with one dose of SNA-VLPs, challenged with FMDV 28 days after immunization, the protection rate can reach 83.3%, which is as high as in the ISA-206 control group. In conclusion, the novel squalane nano-emulsion adjuvant is an effective adjuvant for the FMD-VLPs vaccine, indicating a promising adjuvant for the future development of a novel FMD-VLPs vaccine.

4.
Cell Biosci ; 12(1): 123, 2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-35933397

RESUMEN

BACKGROUND: Fibroblasts have important roles in the synthesis and remodeling of extracellular matrix (ECM) proteins during pulmonary fibrosis. However, the spatiotemporal distribution of heterogeneous fibroblasts during disease progression remains unknown. RESULTS: In the current study, silica was used to generate a mouse model of pathological changes in the lung, and single-cell sequencing, spatial transcriptome sequencing and an analysis of markers of cell subtypes were performed to identify fibroblast subtypes. A group of heterogeneous fibroblasts that play an important role at the early pathological stage were identified, characterized based on the expression of inflammatory and proliferation genes (termed inflammatory-proliferative fibroblasts) and found to be concentrated in the lesion area. The expression of GREM1/protein phosphatase 2 regulatory subunit B''alpha (PPP2R3A) in inflammatory-proliferative fibroblasts was found to initiate early pulmonary pathological changes by increasing the viability, proliferation and migration of cells. CONCLUSIONS: Inflammatory-proliferative fibroblasts play a key role in the early pathological changes that occur in silicosis, and during this process, GREM1 is the driving factor that targets PPP2R3A and initiates the inflammatory response, which is followed by irreversible fibrosis induced by SiO2. The GREM1/PPP2R3A pathway may be a potential target in the early treatment of silicosis.

5.
Colloids Surf B Biointerfaces ; 123: 130-5, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25260223

RESUMEN

A type of novel macromolecular colloid was prepared from gadolinium-based poly(l-succinimide) and gold nanoparticles (GNPs) with Au-S covalent bonds. The colloid displayed improved stability in aqueous media and regular arrays in partial region. Moreover, these materials enhanced the contrast 9 times more than that of the corresponding uncoated Au compound when the Au mass content was only 0.15%. Therefore, these materials might have potential as dual-modality contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT).


Asunto(s)
Coloides/química , Medios de Contraste/química , Gadolinio/química , Oro/química , Nanopartículas del Metal/química , Imagen por Resonancia Magnética
6.
J Mol Histol ; 42(5): 467-72, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21863328

RESUMEN

In the present study, we investigated the tissue distribution and expression of signaling lymphocyte activation molecule (SLAM) in 40 tissues and organs of goats by real-time RT-PCR, in order to determine the role of these receptors in tissue tropism. SLAM mRNA was detected in all the samples investigated. The expression of SLAM mRNA was detected at high levels in spleen, mesenteric lymph node, hilar lymph node, mandibular lymph node, superficial cervical lymph node, nasal mucosa, duodenum, heart, gallbladder, thymus and blood; this is similar to the tissue tropism of peste des petits ruminant virus. However, it was surprising that expression of SLAM was low in lungs, colon and rectum which are the major sites of replication of PPRV. In addition, very low levels were detected in larynx, tongue and esophagus, which suggest the possible presence of an alternative receptor for PPRV. This study provided the first data on caprine SLAM for use in further studies of the pathogenesis of PPRV in goats.


Asunto(s)
Antígenos CD/genética , Enfermedades de las Cabras/genética , Enfermedades de las Cabras/virología , Cabras/virología , Peste de los Pequeños Rumiantes/veterinaria , Virus de la Peste de los Pequeños Rumiantes/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Receptores de Superficie Celular/genética , Animales , Antígenos CD/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Cabras/genética , Peste de los Pequeños Rumiantes/genética , Peste de los Pequeños Rumiantes/virología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Superficie Celular/metabolismo , Estándares de Referencia , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Distribución Tisular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...