Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(1): 541-551, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33373206

RESUMEN

Solid oxide photoelectrochemical cells (SOPECs) with inorganic ion-conducting electrolytes provide an alternative solution for light harvesting and conversion. Exploring potential photoelectrodes for SOPECs and understanding their operation mechanisms are crucial for continuously developing this technology. Here, ceria-based thin films were newly explored as photoelectrodes for SOPEC applications. It was found that the photoresponse of ceria-based thin films can be tuned both by Sm-doping-induced defects and by the heating temperature of SOPECs. The whole process was found to depend on the surface electrochemical redox reactions synergistically with the bulk photoelectric effect. Samarium doping level can selectively switch the open-circuit voltages polarity of SOPECs under illumination, thus shifting the potential of photoelectrodes and changing their photoresponse. The role of defect chemistry engineering in determining such a photoelectrochemical process was discussed. Transient absorption and X-ray photoemission spectroscopies, together with the state-of-the-art in operando X-ray absorption spectroscopy, allowed us to provide a compelling explanation of the experimentally observed switching behavior on the basis of the surface reactions and successive charge balance in the bulk.

2.
Phys Chem Chem Phys ; 21(29): 16230-16239, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31298262

RESUMEN

Understanding the oxygen evolution reaction (OER) dependence on the reaction environment pH is important to find alternative strategies to define an optimal pH value for high electrocatalytic activity. SrCoO2.5 films with the brownmillerite phase are investigated in this study for their strain effects on the OER activity, with particular regard to the pH dependence. Pulsed laser deposited films with different thicknesses and, thus, strain conditions, are characterized in terms of long range and near-order structural properties and electrochemical OER activity. By comparison, more strained thinner films have smaller OER current at lower pH conditions, but higher sensitivity to the environment pH. Spectroscopic measurements allow us to correlate such behaviors to the Co 3d-O 2p hybridization effects of the CoO6 octahedral sites, which lead to a variation of the 3d level electronic occupation. At the same time, density functional theory calculations show that the oxygen vacancy channels of the CoO4 tetrahedral sites are stable with respect to the strain effects. These results provide new perspectives to manipulate the pH dependent OER activity through the strain effects, useful for designing water splitting-based devices with optimized performances.

3.
ACS Nano ; 10(11): 9840-9851, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27704780

RESUMEN

Multiferroic composite materials combining ferroelectric and ferromagnetic order at room temperature have great potential for emerging applications such as four-state memories, magnetoelectric sensors, and microwave devices. In this paper, we report an effective and facile liquid phase deposition route to create multiferroic composite thin films involving the spin-coating of nanoparticle dispersions of BaTiO3, a well-known ferroelectric, and CoFe2O4, a highly magnetostrictive material. This approach offers great flexibility in terms of accessible film configurations (co-dispersed as well as layered films), thicknesses (from 100 nm to several µm) and composition (5-50 wt % CoFe2O4 with respect to BaTiO3) to address various potential applications. A detailed structural characterization proves that BaTiO3 and CoFe2O4 remain phase-separated with clear interfaces on the nanoscale after heat treatment, while electrical and magnetic studies indicate the simultaneous presence of both ferroelectric and ferromagnetic order. Furthermore, coupling between these orders within the films is demonstrated with voltage control of the magnetism at ambient temperatures.

4.
ACS Appl Mater Interfaces ; 8(23): 14613-21, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27192540

RESUMEN

Samaria-doped ceria (SDC) thin films are particularly important for energy and electronic applications such as microsolid oxide fuel cells, electrolyzers, sensors, and memristors. In this paper, we report a comparative study investigating ionic conductivity and surface reactions for well-grown epitaxial SDC films varying the samaria doping concentration. With increasing doping above 20 mol % of samaria, an enhancement in the defect association is observed by Raman spectroscopy. The role of such associated defects on the films̀ oxygen ion transport and exchange is investigated by electrochemical impedance spectroscopy and electrochemical strain microscopy (ESM). The measurements reveal that the ionic transport has a sharp maximum in ionic conductivity and drops in its activation energy down to 0.6 eV for 20 mol % doping. Increasing the doping concentration further up to 40 mol %, it raises the activation energy substantially by a factor of 2. We ascribe the sluggish transport kinetics to the "bulk" ionic-near ordering in case of the heavily doped epitaxial films. Analysis of the ESM first-order reversal curve measurements indicates that these associated defects may have a beneficial role by lowering the activation of the oxygen exchange "surface" reaction for heavily doped 40 mol % of samaria. In a model experiment, through a solid solution series of samaria doped ceria epitaxial films, we reveal that the occurrence of associated defects in the bulk affects the surface charging state of the SDC films to increase the exchange rates. The implication of these findings is the design of coatings with tuned oxygen surface exchange by controlling the bulk associated clusters for future electrocatalytic applications.

5.
Nat Mater ; 14(7): 721-7, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26076303

RESUMEN

Understanding 'electro-chemo-mechanics' in oxygen ion conducting membranes represents a foundational step towards new energy devices such as micro fuel cells and oxygen or fuel separation membranes. For ionic transport in macro crystalline electrolytes, doping is conventionally used to affect oxygen ionic association/migration energies. Recently, tuning ionic transport in films through lattice strain conveyed by substrates or heterostructures has generated much interest. However, reliable manipulation of strain states to twist the ionic conduction in real micro energy devices remains intractable. Here, we demonstrate that the oxygen ionic conductivity clearly correlates with the compressive strain energy acting on the near order of the electrolyte lattices by comparing thin-film ceria-based membrane devices against substrate-supported flat structures. It is possible to capitalize on this phenomenon with a smart choice of strain patterns achieved through microelectrode design. We highlight the importance of electro-chemo-mechanics in the electrolyte material for the next generation of solid-state energy conversion microdevices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA