Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 19(10): 7085-7092, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31524409

RESUMEN

Two-dimensional (2D) ZnO nanosheets with highly concentrated Zn vacancies (VZn) of up to approximately 33% were synthesized by ionic layer epitaxy at the water-toluene interface. This high cation vacancy concentration is unprecedented for ZnO and may provide unique opportunities to realize exotic properties not attainable in the conventional bulk form. After annealing, the nanosheets showed characteristic magnetic hysteresis with saturation magnetization of 57.2 emu/g at 5 K and 50.9 emu/g at room temperature. This value is 1 order of magnitude higher than other ZnO nanostructures and comparable to the conventional ferrimagnetic Fe3O4. Density functional theory calculations, with the support of experimental results, suggest that a high concentration of VZn (approximately one-third of the Zn sites) can form spontaneously during synthesis when stabilized by H ions, and the formation of VZn could be further facilitated by the presence of grain boundaries. It is essential to remove the H for the nanosheets to show ferromagnetism. The mechanisms identified for the origin of the high magnetism in ZnO nanosheets presents an intriguing example of a kinetically stabilized, non-equilibrium, highly defective 2D nanomaterial with a significantly enhanced physical property.

2.
Langmuir ; 33(31): 7708-7714, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28715637

RESUMEN

Ionic layer epitaxy (ILE) has recently been developed as an effective strategy to synthesize nanometer thick 2D materials with a nonlayered crystal structure, such as ZnO. The packing density of the amphiphilic monolayer is believed to be a key parameter that controls the nanosheet nucleation and growth. In this work, we systematically investigated the growth behavior of single-crystalline ZnO nanosheets templated at the water-air interface by an anionic oleylsulfate monolayer with different packing densities. The thicknesses of ZnO nanosheets were tuned from one unit cell to four unit cells and exhibited good correlation with the width of Zn2+ ion concentration zone (the Stern layer) underneath the ionized surfactant monolayer. Further analysis of the nanosheet sizes and density revealed that the nanosheet growth was dominated by the steric hindrance from the surfactant monolayer at lower surface pressure, while the nucleation density became the dominating factor at higher surface pressure. The ZnO nanosheets exhibited a decreasing work function as the thickness reduced to a few unit cells. This research validated a critical hypothesis that the nanosheet growth is self-limited by the formation of a double layer of ionic precursors. This work will open up a new way toward controlled synthesis of novel 2D nanosheets from nonlayered materials with a thickness down to one unit cell.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...