Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Int Immunopharmacol ; 138: 112616, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38959544

RESUMEN

Intervertebral disc degeneration (IDD) is the leading cause of low back pain, which is one of the major factors leading to disability and severe economic burden. Necroptosis is an important form of programmed cell death (PCD), a highly regulated caspase-independent type of cell death that is regulated by receptor-interacting protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain-like protein (MLKL)-mediated, play a key role in the pathophysiology of various inflammatory, infectious and degenerative diseases. Recent studies have shown that necroptosis plays an important role in the occurrence and development of IDD. In this review, we provide an overview of the initiation and execution of necroptosis and explore in depth its potential mechanisms of action in IDD. The analysis focuses on the connection between NP cell necroptosis and mitochondrial dysfunction-oxidative stress pathway, inflammation, endoplasmic reticulum stress, apoptosis, and autophagy. Finally, we evaluated the possibility of treating IDD by inhibiting necroptosis, and believed that targeting necroptosis may be a new strategy to alleviate the symptoms of IDD.

2.
Drug Des Devel Ther ; 18: 2609-2616, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947222

RESUMEN

Background: Fluid loading improves hemodynamic stability and reduces the incidence rate of post-spinal anesthesia hypotension when prophylactic vasopressors are administered. We investigated the impact of different crystalloid coload volumes on the 90% effective dose (ED) of prophylactic norepinephrine infusion for preventing post-spinal anesthesia hypotension in non-hypertensive patients undergoing cesarean section. Methods: Patients were randomly allocated to receive one of the different crystalloid coload volumes (0mL/kg [0mL/kg Group], 5mL kg [5mL/kg Group], and 10mL kg [10mL/kg Group]) in combination with prophylactic norepinephrine infusion immediately after the induction of spinal anesthesia. The prophylactic norepinephrine infusion doses were determined using the up-and-down sequential allocation methodology, with an initial dose of 0.025 µg/kg/min and a gradient of 0.005 µg/kg/min. The primary endpoint was the effective dose at which 90% (ED 90) of patients responded to prophylactic norepinephrine infusion for preventing post-spinal anesthesia hypotension. Results: The estimated effective dose of norepinephrine infusion, at which 90% (ED 90) of patients responded, was found to be 0.084 (95% CI, 0.070 to 0.86), 0.074 (95% CI, 0.059 to 0.077), and 0.063 (95% CI, 0.053 to 0.064) µg/kg/min in the three groups, respectively. Conclusion: A crystalloid coload of 5 mL/kg or 10 mL/kg, as opposed to the groups receiving 0 mL/kg crystalloid coloads, resulted in a reduction of approximately 11.9% and 25.0%, respectively, in the ED90 of prophylactic norepinephrine infusion for preventing post-spinal anesthesia hypotension during cesarean section.


Asunto(s)
Anestesia Raquidea , Cesárea , Soluciones Cristaloides , Hipotensión , Norepinefrina , Humanos , Hipotensión/prevención & control , Norepinefrina/administración & dosificación , Femenino , Adulto , Soluciones Cristaloides/administración & dosificación , Anestesia Raquidea/efectos adversos , Embarazo , Infusiones Intravenosas , Relación Dosis-Respuesta a Droga
3.
Antonie Van Leeuwenhoek ; 117(1): 102, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012584

RESUMEN

This study represents the first analysis of the bacterial community in chickens affected by swollen head syndrome, utilizing 16S rRNA gene sequencing. Samples were obtained from clinical laying chickens and were examined for the presence of Avibacterium paragallinarum (APG) and Ornithobacterium rhinotracheale (ORT) using conventional polymerase chain reaction (PCR). From the samples, five APG-positive (APG) and APG-negative (N-APG) samples were chosen, along with five specific pathogen-free chickens, for 16S rRNA gene sequencing. Results showed that APG and ORT were widely detected in the chicken samples with swollen head syndrome (SHS, 9/10), while APG was detected in all five specific pathogen-free (SPF) samples. In contrast, conventional PCR sensitivity was found to be inadequate for diagnosis, with only 35.7% (5/14) and 11.1% (1/9) sensitivity for APG and ORT, respectively, based on 16S rRNA gene sequencing data. Furthermore, 16S rRNA gene sequencing was able to quantify the bacteria in the samples, revealing that the relative abundance of APG in the APG group ranged from 2.7 to 81.3%, while the relative abundance of APG in the N-APG group ranged from 0.1 to 21.0%. Notably, a low level of APG was also detected in all 5 SPF samples. The study also identified a significant number of animal and human common bacterial pathogens, including but not limited to Gallibacterium anatis, Riemerella columbina, Enterococcus cecorum, Mycoplasma synoviae, Helicobacter hepaticus, and Staphylococcus lentus. In conclusion, 16S rRNA gene sequencing is a valuable tool for bacterial pathogen diagnosis and the discovery of novel bacterial pathogens, while conventional PCR is not reliable for diagnosis.


Asunto(s)
Pollos , Reacción en Cadena de la Polimerasa , Enfermedades de las Aves de Corral , ARN Ribosómico 16S , ARN Ribosómico 16S/genética , Animales , Pollos/microbiología , Reacción en Cadena de la Polimerasa/métodos , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/diagnóstico , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Filogenia
4.
J Integr Neurosci ; 23(5): 89, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38812380

RESUMEN

Neuropathic pain is a common pain syndrome, which seriously affects the quality of life of patients. The mechanism of neuropathic pain is complex. Peripheral tissue injury can trigger peripheral sensitization; however, what really plays a key role is the sensitization of the central nervous system. Central sensitization is a key factor in the perception of chronic pain. Central sensitization refers to the increased sensitivity of the central nervous system to pain treatment, which is related to the change of the functional connection mode of the neural network. The current study aims to reveal the basic molecular mechanisms of central sensitization, including the involvement of P2 purine X4 receptor and brain-derived neurotrophic factor. In terms of treatment, although there are drugs and physical therapy, the accuracy of targeting is limited and the efficacy needs to be further improved. Future therapeutic strategies may involve the development of new drugs designed to specifically inhibit the central sensitization process. This article focuses on the effector molecules involved in central sensitization, aiming to elucidate the pathogenesis of neuropathic pain and provide a basis for the development of more effective treatment models.


Asunto(s)
Sensibilización del Sistema Nervioso Central , Neuralgia , Neuralgia/terapia , Neuralgia/fisiopatología , Humanos , Sensibilización del Sistema Nervioso Central/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo
5.
Anal Chim Acta ; 1304: 342515, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38637032

RESUMEN

Aiming for sustainable crop productivity under changing climate conditions, it is essential to develop handy models for in-situ monitoring of reactive oxygen species (ROS). Herein, this work reports a simple electrochemical sensing toward hydrogen peroxide (H2O2) for tracking crop growth status sensitized with electron-migration nanostructure. To be specific, Cu-based metal-organic frameworks (MOFs) with high HOMO energy level are designed for H2O2 reduction on account of Cu(I)/Cu(II) redox switchability. Importantly, the sensing performance is improved by electrochemically reduced graphene oxide (GO) with ready to use feature. To overcome the shortcomings of traditional liquid electrolytes, conductive hydrogel as semi-solid electrolyte exhibits the adhesive property to the cut plant petiole surface. Benefitting from the preferred composite models and conductive hydrogel, the electrochemical sensing toward H2O2 with high sensitivity and good anti-interference against the coexistent molecules, well qualified for acquiring plant growth status.

6.
Compr Rev Food Sci Food Saf ; 23(3): e13339, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578165

RESUMEN

The importance of food quality and safety lies in ensuring the best product quality to meet consumer demands and public health. Advanced technologies play a crucial role in minimizing the risk of foodborne illnesses, contamination, drug residue, and other potential hazards in food. Significant materials and technological advancements have been made throughout the food supply chain. Among them, quantum dots (QDs), as a class of advanced nanomaterials with unique physicochemical properties, are progressively demonstrating their value in the field of food quality and safety. This review aims to explore cutting-edge research on the different applications of QDs in food quality and safety, including encapsulation of bioactive compounds, detection of food analytes, food preservation and packaging, and intelligent food freshness indicators. Moreover, the modification strategies and potential toxicities of diverse QDs are outlined, which can affect performance and hinder applications in the food industry. The findings suggested that QDs are mainly used in analyte detection and active/intelligent food packaging. Various food analytes can be detected using QD-based sensors, including heavy metal ions, pesticides, antibiotics, microorganisms, additives, and functional components. Moreover, QD incorporation aided in improving the antibacterial and antioxidant activities of film/coatings, resulting in extended shelf life for packaged food. Finally, the perspectives and critical challenges for the productivity, toxicity, and practical application of QDs are also summarized. By consolidating these essential aspects into this review, the way for developing high-performance QD-based nanomaterials is presented for researchers and food technologists to better capitalize upon this technology in food applications.


Asunto(s)
Puntos Cuánticos , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Microbiología de Alimentos , Embalaje de Alimentos/métodos , Calidad de los Alimentos , Puntos Cuánticos/toxicidad
8.
Angew Chem Int Ed Engl ; 63(21): e202319755, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38386897

RESUMEN

All-polymer solar cells (all-PSCs) have been regarded as one of the most promising candidates for commercial applications owing to their outstanding advantages such as mechanical flexibility, light weight and stable film morphology. However, compared to large amount of new-emerging excellent polymer acceptors, the development of high-performance polymer donor lags behind. Herein, a new D-π-A type polymer donor, namely QQ1, was developed based on dithienoquinoxalineimide (DTQI) as the A unit, benzodithiophene with thiophene-conjugated side chains (BDTT) as the D unit, and alkyl-thiophene as the π-bridge, respectively. QQ1 not only possesses a strong dipole moment, but also shows a wide band gap of 1.80 eV and a deep HOMO energy level of -5.47 eV, even without halogen substituents that are commonly indispensable for high-performance polymer donors. When blended with a classic polymer acceptor PY-IT, the QQ1-based all-PSC delivers an outstanding PCE of 18.81 %. After the introduction of F-BTA3 as the third component, a record PCE of 19.20 % was obtained, the highest value reported so far for all-PSCs. The impressive photovoltaic performance originates from broad absorption range, reduced energy loss, and compact π-π stacking. These results provide new insight in the rational design of novel nonhalogenated polymer donors for further development of all-PSCs.

9.
Food Chem ; 442: 138312, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38219562

RESUMEN

Herein, a bifunctional electrochemical biosensor based on the DNA tetrahedral scaffolds (TDNs) was proposed, OTA@TDNs and AFB1@TDNs were adopted for electrochemical signal output in response to OTA and AFB1 concentration, simultaneously. In order to increase the conductivity of the biosensor, highly porous gold (HPG) was loaded on electrode surface by pulse electrodeposition. Under optimal conditions, the PFc displayed a linear range with AFB1 concentration between 0.05 âˆ¼ 360 ng·mL-1 with the LOD of 3.5 pg·mL-1. And the PMB selective and sensitive responses to OTA are achieved with a linear range of 0.05 âˆ¼ 420 ng·mL-1 and a LOD of 2.4 pg·mL-1. This biosensor has high sensitivity, selectivity and stability for OTA and AFB1 detection in peanut samples. The approach streamlines the experimental procedure, leading to significantly improve the detection efficiency of mycotoxins. Collectively, this method suggest a novel approach for the detection and monitoring of OTA and AFB1 in food sample.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Ocratoxinas , Ocratoxinas/análisis , Aflatoxina B1/análisis , Contaminación de Alimentos/análisis , ADN , Límite de Detección , Técnicas Electroquímicas
10.
Angew Chem Int Ed Engl ; 63(11): e202319658, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38265195

RESUMEN

Developing low-cost and high-performance n-type polymer semiconductors is essential to accelerate the application of organic thermoelectrics (OTEs). To achieve this objective, it is critical to design strong electron-deficient building blocks with simple structure and easy synthesis, which are essential for the development of n-type polymer semiconductors. Herein, we synthesized two cyano-functionalized highly electron-deficient building blocks, namely 3,6-dibromopyrazine-2-carbonitrile (CNPz) and 3,6-Dibromopyrazine-2,5-dicarbonitrile (DCNPz), which feature simple structures and facile synthesis. CNPz and DCNPz can be obtained via only one-step reaction and three-step reactions from cheap raw materials, respectively. Based on CNPz and DCNPz, two acceptor-acceptor (A-A) polymers, P(DPP-CNPz) and P(DPP-DCNPz) are successfully developed, featuring deep-positioned lowest unoccupied molecular orbital (LUMO) energy levels, which are beneficial to n-type organic thin-film transistors (OTFTs) and OTEs performance. An optimal unipolar electron mobility of 0.85 and 1.85 cm2 V-1 s-1 is obtained for P(DPP-CNPz) and P(DPP-DCNPz), respectively. When doped with N-DMBI, P(DPP-CNPz) and P(DPP-DCNPz) show high n-type electrical conductivities/power factors of 25.3 S cm-1 /41.4 µW m-1 K-2 , and 33.9 S cm-1 /30.4 µW m-1 K-2 , respectively. Hence, the cyano-functionalized pyrazine CNPz and DCNPz represent a new class of structurally simple, low-cost and readily accessible electron-deficient building block for constructing n-type polymer semiconductors.

11.
Chem Asian J ; 19(3): e202301009, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38116900

RESUMEN

Exploration of new electron-withdrawing building blocks plays a key role in the development of n-type organic semiconductors. Herein, a strong electron-withdrawing building block, dipyridyl-fused quinoxalineimide (DPQI), was successfully designed and synthesized. Single-crystal structure reveals that DPQI molecule possesses a completely planar backbone, which is beneficial for charge transport. For comparison, dibenzo-fused quinoxalineimide (DBQI) was also synthesized. The frontier molecular orbital (FMO) energy levels downshift with the incorporation of nitrogen atoms onto the π-conjugated backbone of quinoxalineimide. Two acceptor-acceptor (or all-acceptor) polymers P(BTI-DBQI) and P(BTI-DPQI) based on DBQI and DPQI were synthesized, respectively. Two polymers exhibit deep lowest-unoccupied molecular orbital (LUMO) levels (~-3.5 eV). Additionally, P(BTI-DPQI) exhibits unipolar n-type charge transport with µe of 1.4×10-4  cm2  V-1 s-1 in the organic field-effect transistors (OFET), which render them highly attractive for developing n-type semiconductors device. This work demonstrates that DPQI is a promising building block for constructing n-type polymer semiconductors.

12.
Plants (Basel) ; 12(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37960093

RESUMEN

Fiber quality traits, especially fiber strength, length, and micronaire (FS, FL, and FM), have been recognized as critical fiber attributes in the textile industry, while the lint percentage (LP) was an important indicator to evaluate the cotton lint yield. So far, the genetic mechanism behind the formation of these traits is still unclear. Quantitative trait loci (QTL) identification and candidate gene validation provide an effective methodology to uncover the genetic and molecular basis of FL, FS, FM, and LP. A previous study identified three important QTL/QTL cluster loci, harboring at least one of the above traits on chromosomes A01, A07, and D12 via a recombinant inbred line (RIL) population derived from a cross of Lumianyan28 (L28) × Xinluzao24 (X24). A secondary segregating population (F2) was developed from a cross between L28 and an RIL, RIL40 (L28 × RIL40). Based on the population, genetic linkage maps of the previous QTL cluster intervals on A01 (6.70-10.15 Mb), A07 (85.48-93.43 Mb), and D12 (0.40-1.43 Mb) were constructed, which span 12.25, 15.90, and 5.56 cM, with 2, 14, and 4 simple sequence repeat (SSR) and insertion/deletion (Indel) markers, respectively. QTLs of FL, FS, FM, and LP on these three intervals were verified by composite interval mapping (CIM) using WinQTL Cartographer 2.5 software via phenotyping of F2 and its derived F2:3 populations. The results validated the previous primary QTL identification of FL, FS, FM, and LP. Analysis of the RNA-seq data of the developing fibers of L28 and RIL40 at 10, 20, and 30 days post anthesis (DPA) identified seven differentially expressed genes (DEGs) as potential candidate genes. qRT-PCR verified that five of them were consistent with the RNA-seq result. These genes may be involved in regulating fiber development, leading to the formation of FL, FS, FM, and LP. This study provides an experimental foundation for further exploration of these functional genes to dissect the genetic mechanism of cotton fiber development.

13.
J Org Chem ; 88(20): 14368-14376, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37792439

RESUMEN

A novel family of bisbenzothieno[b]-fused BODIPYs containing seven fused aromatic rings has been developed from readily available benzothieo[3,2-b]pyrroles through an efficient two-step synthetic route, exhibiting planar skeletons with excellent photostabilities, deep-red absorptions, and near-infrared emissions (up to 753 nm). Importantly, the thin-film transistors based on BTB with a meso-dimethylamino-phenyl group exhibit unipolar n-type charge transporting characteristics with a high electron mobility of 0.013 cm2 V-1 s-1.

14.
Daru ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37812381

RESUMEN

PURPOSE: Colloid and/or co-load may be more effective than crystalloid for preventing postspinal anesthesia hypotension. We tested five different prophylactic norepinephrine dosages combined with colloid co-load infusion in patients receiving cesarean section and spinal anesthesia. METHODS: Patients were randomly allocated to receive different prophylactic norepinephrine dosages (0 [NE 0 group], 0.025 [NE 25 group], 0.05 [NE 50 group], 0.075 [NE 75 group], or 0.1 [NE 100 group] µg/kg/min) combined with 500 mL 6% hydroxyethyl starch (130/0.4) immediately following spinal anesthesia (n = 35 per group). The primary endpoint was the incidence of postspinal anesthesia hypotension (systolic blood pressure [SBP] < 80% of baseline). Secondary endpoints included severe hypotension, bradycardia, nausea or vomiting, hypertension, SBP stability control versus baseline, the 50% (effective dose, ED50) and 90% (ED90) dose effective for preventing postspinal anesthesia hypotension, Apgar scores, and umbilical cord blood gases. RESULTS: The incidence of postspinal anesthesia hypotension was 48.6%, 31.3%, 17.1%, 14.3%, and 5.7% in the respective groups. As the prophylactic norepinephrine dosage increased, the incidence of postspinal anesthesia hypotension declined (p < 0.001), and SBP remained stable relative to baseline (median performance error [MDPE], p < 0.001; median absolute performance error [MDAPE], p = 0.001). The ED50 and ED90 values were -0.006 (95% CI -0.046-0.013) and 0.081 (95% CI 0.063-0.119) µg/kg/min. Other endpoints were comparable across the groups. CONCLUSION: An initial prophylactic norepinephrine dosage of 0.05 µg/kg/min combined with 500 mL 6% hydroxyethyl starch (130/0.4) co-load infusion was optimal for preventing postspinal anesthesia hypotension during cesarean section. TRIAL REGISTRATION: NCT05133817, registration date: 12 Nov, 2021.

15.
Adv Clin Exp Med ; 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37747443

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is a lethal brain tumor with high mortality and morbidity. Nerolidol (NRD) is a sesquiterpene alcohol sequestered from the essential oils of aromatic florae with potent antioxidant, antiviral, anticancer, cardioprotective, and neuroprotective activity. OBJECTIVES: The aim of the study was to investigate the underlying cell-cycle mechanisms of NRD-mediated antiproliferative and apoptosis activities in GBM using human U-251 cells. MATERIAL AND METHODS: The current research investigated the antiproliferative and apoptotic activities of NRD on U-251 cells. The effects of NRD were measured using a Cell Counting Kit-8 (CCK-8) assay, 4',6-diamidino-2-phenylindole (DAPI) staining, messenger ribonucleic acid (mRNA) level assessment, and western blot assay. RESULTS: Nerolidol decreased U-251 viability in a dose-dependent manner, as well as induced apoptotic activity, reduced B-cell lymphoma-2 (BCL-2) levels, and increased mRNA expression of BCL-2-associated X (Bax), caspase-3 and caspase-9. The attenuation of the cyclin-D1, cyclin-dependent kinase 4 (CDK4) and CDK6 mRNA expression confirmed cell cycle regulation. Western blot analysis of CDK1 indicated reductions in cyclin-B1 and p21. Furthermore, NRD prompted apoptosis through p38 amelioration and increased phosphorylated extracellular signal-related kinase 1 (p-ERK1) and phosphorylated c-Jun N-terminal protein kinase 1 (p-JNK1) levels. CONCLUSIONS: Nerolidol inhibited GBM cell viability and induced apoptosis through the regulation of cell-cycle proteins via p38 mitogen-activated protein kinase (MAPK) signaling pathways. Thus, NRD could be developed as a potential natural therapeutic agent for GBM.

16.
Nat Plants ; 9(10): 1760-1775, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37749240

RESUMEN

Accurate delineation of plant cell organelles from electron microscope images is essential for understanding subcellular behaviour and function. Here we develop a deep-learning pipeline, called the organelle segmentation network (OrgSegNet), for pixel-wise segmentation to identify chloroplasts, mitochondria, nuclei and vacuoles. OrgSegNet was evaluated on a large manually annotated dataset collected from 19 plant species and achieved state-of-the-art segmentation performance. We defined three digital traits (shape complexity, electron density and cross-sectional area) to track the quantitative features of individual organelles in 2D images and released an open-source web tool called Plantorganelle Hunter for quantitatively profiling subcellular morphology. In addition, the automatic segmentation method was successfully applied to a serial-sectioning scanning microscope technique to create a 3D cell model that offers unique views of the morphology and distribution of these organelles. The functionalities of Plantorganelle Hunter can be easily operated, which will increase efficiency and productivity for the plant science community, and enhance understanding of subcellular biology.


Asunto(s)
Aprendizaje Profundo , Microscopía Electrónica , Núcleo Celular , Mitocondrias , Cloroplastos
17.
Neurochem Res ; 48(10): 3099-3112, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37336823

RESUMEN

Purinergic receptor P2X4 (P2X4R) plays an essential role in neuropathic pain. However, the specific mechanism needs to be clarified. Botulinum toxin type A is a neurotoxin produced by Clostridium botulinum type A. This study found that intrathecal injection of botulinum toxin type A produced an excellent analgesic effect in a rat model of chronic constriction sciatic nerve injury and inhibited the activation of P2X4R, microglia, and astrocytes. The administration of a P2X4R activator can up-regulate the expression of P2X4R and eliminate the analgesic effect of intrathecal injection of botulinum toxin type A. In addition, we found that microglia and astrocytes in the spinal cord of rats injected with botulinum toxin type A were reactivated after administration of the P2X4R activator. Our results suggest that intrathecal injection of botulinum toxin type A has an analgesic effect in a rat model of chronic constriction sciatic nerve injury by inhibiting the activation of P2X4R in the spinal cord.


Asunto(s)
Toxinas Botulínicas Tipo A , Neuralgia , Ratas , Masculino , Animales , Toxinas Botulínicas Tipo A/uso terapéutico , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Médula Espinal/metabolismo , Inyecciones Espinales , Analgésicos/uso terapéutico , Analgésicos/metabolismo , Hiperalgesia/metabolismo
18.
Chempluschem ; 88(6): e202300215, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37272867

RESUMEN

Organic thermoelectric (OTE) materials have garnered increasing attention due to their potential application in wearable/flexible TE generator for energy harvesting. To meet the practical application of thermoelectric device, high-performance p- and n-type OTE materials are both necessary. In the past few years, improved n-type polymer semiconductors have developed rapidly in the OTE field; however, their thermoelectric performance is still lagging behind p-type counterparts. Therefore, more efforts should be made to enhance n-type polymer TE performance, including development of novel molecule structure, synthesis of new dopants and optimization of device engineering. In this Review, we highlight the effects of molecular structure and side chain length and polarity of n-type polymer semiconductors on the TE performance such as electron transport, electrical conductivity, and power factor. Finally, further perspectives and challenges are also discussed to provide useful guidelines for the design of high-performance n-type OTE materials.

19.
Food Chem ; 426: 136553, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37354581

RESUMEN

Herein, the cooperative catalysis effect between nanocomposite (AgPd NPs/POD-M/PEI-rGO) and horseradish peroxidase (HRP) was applied for the fast and sensitive detection of aflatoxin B1 (AFB1). Upon specific and competitive binding of HRP@DNA and AFB1 to cDNA, the working electrode presented different catalytic capacities for supporting electrolytes (TMB and H2O2). In the redox mechanism of TMB and H2O2, HRP and nanocomposite effectively catalyzed the oxidization of TMB to form the one-electron oxidation intermediate TMB+, and contributed the electrical signals and absorbance signals. Electrochemistry and colorimetric analyses were successfully realized for AFB1 detection with 0.2 pg/mL and 8 pg/mL of detection limits, respectively, which is much lower than that of traditional HPLC methods. Overall, this method had significant reliability and sensitivity, offering a promising potential for conveniently evaluating the quality of agri-products polluted with AFB1. Moreover, this approach provides a new idea for fast and accurate detection of mycotoxin.


Asunto(s)
Técnicas Biosensibles , Peróxido de Hidrógeno , Reproducibilidad de los Resultados , Peroxidasa de Rábano Silvestre , Catálisis , Aflatoxina B1/análisis , Límite de Detección
20.
Front Mol Neurosci ; 16: 1142852, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37273906

RESUMEN

Background: Microglia has gradually gained researchers' attention in the past few decades and has shown its promising prospect in treating neuropathic pain. Our study was performed to comprehensively evaluate microglia-related neuropathic pain via a bibliometric approach. Methods: We retrospectively reviewed publications focusing on microglia-related neuropathic pain from 2000 to 2021 in WoSCC. VOS viewer software and CiteSpace software were used for statistical analyses. Results: A total of 2,609 articles were finally included. A steady increase in the number of relevant publications was observed in the past two decades. China is the most productive country, while the United States shares the most-cited and highest H-index country. The University of London, Kyushu University, and the University of California are the top 3 institutions with the highest number of publications. Molecular pain and Pain are the most productive and co-cited journals, respectively. Inoue K (Kyushu University) is the most-contributed researcher and Ji RR (Duke University) ranks 1st in both average citations per article and H-index. Keywords analyses revealed that pro-inflammatory cytokines shared the highest burst strength. Sex differences, neuroinflammation, and oxidative stress are the emerging keywords in recent years. Conclusion: In the field of microglia-related neuropathic pain, China is the largest producer and the United States is the most influential country. The signaling communication between microglia and neurons has continued to be vital in this field. Sexual dimorphism, neuroinflammation, and stem-cell therapies might be emerging trends that should be closely monitored.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...