Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 60
1.
Environ Sci Technol ; 2024 Jun 08.
Article En | MEDLINE | ID: mdl-38850427

New particle formation (NPF) is a major source of atmospheric aerosol particles, including cloud condensation nuclei (CCN), by number globally. Previous research has highlighted that NPF is less frequent but more intense at roadsides compared to urban background. Here, we closely examine NPF at both background and roadside sites in urban Central Europe. We show that the concentration of oxygenated organic molecules (OOMs) is greater at the roadside, and the condensation of OOMs along with sulfuric acid onto new particles is sufficient to explain the growth at both sites. We identify a hitherto unreported traffic-related OOM source contributing 29% and 16% to total OOMs at the roadside and background, respectively. Critically, this hitherto undiscovered OOM source is an essential component of urban NPF. Without their contribution to growth rates and the subsequent enhancements to particle survival, the number of >50 nm particles produced by NPF would be reduced by a factor of 21 at the roadside site. Reductions to hydrocarbon emissions from road traffic may thereby reduce particle numbers and CCN counts.

2.
Sci Bull (Beijing) ; 69(7): 978-987, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38242834

Aerosol ammonium (NH4+), mainly produced from the reactions of ammonia (NH3) with acids in the atmosphere, has significant impacts on air pollution, radiative forcing, and human health. Understanding the source and formation mechanism of NH4+ can provide scientific insights into air quality improvements. However, the sources of NH3 in urban areas are not well understood, and few studies focus on NH3/NH4+ at different heights within the atmospheric boundary layer, which hinders a comprehensive understanding of aerosol NH4+. In this study, we perform both field observation and modeling studies (the Community Multiscale Air Quality, CMAQ) to investigate regional NH3 emission sources and vertically resolved NH4+ formation mechanisms during the winter in Beijing. Both stable nitrogen isotope analyses and CMAQ model suggest that combustion-related NH3 emissions, including fossil fuel sources, NH3 slip, and biomass burning, are important sources of aerosol NH4+ with more than 60% contribution occurring on heavily polluted days. In contrast, volatilization-related NH3 sources (livestock breeding, N-fertilizer application, and human waste) are dominant on clean days. Combustion-related NH3 is mostly local from Beijing, and biomass burning is likely an important NH3 source (∼15%-20%) that was previously overlooked. More effective control strategies such as the two-product (e.g., reducing both SO2 and NH3) control policy should be considered to improve air quality.

3.
iScience ; 26(11): 108125, 2023 Nov 17.
Article En | MEDLINE | ID: mdl-37876807

Incomplete combustion of fossil fuels and biomass burning emit large amounts of soot particles into the troposphere. The condensation process is considered to influence the size (Dp) and mixing state of soot particles, which affects their solar absorption efficiency and lifetimes. However, quantifying aging evolution of soot remains hampered in the real world because of complicated sources and observation technologies. In the Himalayas, we isolated soot sourced from transboundary transport of biomass burning and revealed soot aging mechanisms through microscopic observations. Most of coated soot particles stabilized one soot core under Dp < 400 nm, but 34.8% of them contained multi-soot cores (nsoot ≥ 2) and nsoot increased 3-9 times with increasing Dp. We established the soot mixing models to quantify transformation from condensation- to coagulation-dominant regime at Dp ≈ 400 nm. Studies provide essential references for adopting mixing rules and quantifying the optical absorption of soot in atmospheric models.

4.
Environ Res ; 236(Pt 1): 116704, 2023 11 01.
Article En | MEDLINE | ID: mdl-37481053

Climate change and air pollution are closely interlinked since carbon dioxide and air pollutants are co-emitted from fossil fuel combustion. Net Zero (NZ) policies aiming to reduce carbon emissions will likely bring co-benefits in air quality and associated health. However, it is unknown whether regional NZ policies alone will be sufficient to reduce air pollutant levels to meet the latest 2021 World Health Organisation (WHO) guidelines. Here, we carried out high resolution air quality modelling for in the West Midlands region, a typical metropolitan area in the UK, to quantify the effects of different NZ policies on air quality. Results show that NZ policies will significantly improve air quality in the West Midlands, with up to 6 µg m-3 (21%) reduction in annual mean NO2 (mostly through the electrification of vehicle fleet, EV) and up to 1.4 µg m-3 (12%) reduction in annual mean PM2.5 projected for 2030 relative to levels under a "business as usual" (BAU) scenario. Under BAU, 2030 PM2.5 concentrations in most wards would be below 10 µg m-3 whilst under the Net Zero scenario, those in all wards would be below 10 µg m-3. This means that the ward averages in the West Midlands would meet the UK PM2.5 of 10 µg m-3target a decade early under the Net Zero scenario. However, no ward-level-averaged annual mean PM2.concentrations meet the 2021 WHO Air Quality guideline level of 5 µg m-3 under any scenario. Similarly for NO2 only 18 wards (8% of the region's population) are predicted to have NO2 concentrations below the 2021 WHO guideline level (10 µg m-3). Decarbonisation policies linked to Net Zero deliver substantial regional air quality benefits, but are not in isolation sufficient to deliver clean air with air pollutant levels low enough to meet the 2021 WHO guidelines.


Air Pollutants , Air Pollution , Particulate Matter/analysis , Nitrogen Dioxide/analysis , Air Pollution/prevention & control , Air Pollution/analysis , Air Pollutants/analysis , United Kingdom , Environmental Monitoring/methods
5.
Chemosphere ; 334: 139002, 2023 Sep.
Article En | MEDLINE | ID: mdl-37220797

Aromatic volatile organic compounds (VOCs) are an important precursor of secondary organic aerosol (SOA) in the urban environment. SOA formed from the oxidation of anthropogenic VOCs can be substantially more abundant than biogenic SOA and has been shown to account for a significant fraction of fine particulate matter in urban areas. A potential aerosol mass (PAM) chamber was used to investigate the oxidised products from the photo-oxidation of m-xylene and toluene. The experiments were carried out with OH radical as oxidant in both high- and low-NOx conditions and the resultant aerosol samples were collected using quartz filters and analysed by GC × GC-TOFMS. Results show the oxidation products derived from both precursors included ring-retaining and -opening compounds (unsaturated aldehydes, unsaturated ketones and organic acids) with a high number of ring-opening compounds observed from toluene oxidation. Glyoxal and methyl glyoxal were the major ring-cleavage products from both oxidation systems, indicating that a bicyclic route plays an important role in their formation. SOA yields were higher for both precursors under high-NOx (toluene: 0.111; m-xylene: 0.124) than at low-NOx (toluene: 0.089; m-xylene: 0.052), likely linked to higher OH concentrations during low-NOx experiments which may lead to higher degree of fragmentation. DHOPA (2,3-dihydroxy-4-oxo-pentanoic acid), a known tracer of toluene oxidation, was observed in both oxidation systems. The mass fraction of DHOPA in SOA from toluene oxidation was about double the value reported previously, but it should not be regarded as a tracer solely for oxidation of toluene as m-xylene oxidation gave a similar relative yield.


Air Pollutants , Volatile Organic Compounds , Toluene/analysis , Xylenes/analysis , Particulate Matter/analysis , Aerosols/analysis , Volatile Organic Compounds/analysis , Air Pollutants/analysis
6.
Environ Sci Technol ; 57(12): 4741-4750, 2023 03 28.
Article En | MEDLINE | ID: mdl-36930743

New particle formation (NPF) is a leading source of particulate matter by number and a contributor to particle mass during haze events. Reductions in emissions of air pollutants, many of which are NPF precursors, are expected in the move toward carbon neutrality or net-zero. Expected changes to pollutant emissions are used to investigate future changes to NPF processes, in comparison to a simulation of current conditions. The projected changes to SO2 emissions are key in changing future NPF number, with different scenarios producing either a doubling or near total reduction in sulfuric acid-amine particle formation rates. Particle growth rates are projected to change little in all but the strictest emission control scenarios. These changes will reduce the particle mass arising by NPF substantially, thus showing a further cobenefit of net-zero policies. Major uncertainties remain in future NPF including the volatility of oxygenated organic molecules resulting from changes to NOx and amine emissions.


Air Pollutants , Air Pollution , Beijing , Particle Size , Environmental Monitoring/methods , Aerosols/analysis , Air Pollutants/analysis , Particulate Matter/analysis , Amines , Air Pollution/prevention & control , Air Pollution/analysis
7.
Environ Sci Technol ; 57(46): 17707-17717, 2023 Nov 21.
Article En | MEDLINE | ID: mdl-36722723

Heating is a major source of air pollution. To improve air quality, a range of clean heating policies were implemented in China over the past decade. Here, we evaluated the impacts of winter heating and clean heating policies on air quality in China using a novel, observation-based causal inference approach. During 2015-2021, winter heating causally increased annual PM2.5, daily maximum 8-h average O3, and SO2 by 4.6, 2.5, and 2.3 µg m-3, respectively. From 2015 to 2021, the impacts of winter heating on PM2.5 in Beijing and surrounding cities (i.e., "2 + 26" cities) decreased by 5.9 µg m-3 (41.3%), whereas that in other northern cities only decreased by 1.2 µg m-3 (12.9%). This demonstrates the effectiveness of stricter clean heating policies on PM2.5 in "2 + 26" cities. Overall, clean heating policies caused the annual PM2.5 in mainland China to reduce by 1.9 µg m-3 from 2015 to 2021, potentially avoiding 23,556 premature deaths in 2021.


Air Pollutants , Air Pollution , Air Pollutants/analysis , Particulate Matter/analysis , Heating , Environmental Monitoring , Air Pollution/prevention & control , Air Pollution/analysis , China , Cities , Seasons , Policy , Machine Learning
8.
Sci Total Environ ; 854: 158661, 2023 Jan 01.
Article En | MEDLINE | ID: mdl-36096230

Increasing CO2 levels are a major global challenge, and the potential mitigation of anthropogenic CO2 emissions by natural carbon sinks remains poorly understood. The uptake of elevated CO2 (eCO2) by the terrestrial biosphere, and subsequent sequestration as biomass in ecosystems, remain hard to quantify in natural ecosystems. Here, we combine field observations of fine root stocks and flows, derived from belowground imaging and soil cores, with image analysis, stochastic modelling, and statistical inference, to elucidate belowground root dynamics in a mature temperate deciduous forest under free-air eCO2 to 150 ppm above ambient levels. eCO2 led to relatively faster root production (a peak volume fold change of 4.52 ± 0.44 eCO2 versus 2.58 ± 0.21 control), with increased root elongation relative to decay the likely causal mechanism for this acceleration. Physical analysis of 552 root systems from soil cores support this picture, with lengths and widths of fine roots significantly increasing under eCO2. Estimated fine root contributions to belowground net primary productivity increase under eCO2 (mean annual 204 ± 93 g dw m-2 yr-1 eCO2 versus 140 ± 60 g dw m-2 yr-1 control). This multi-faceted approach thus sheds quantitative light on the challenging characterisation of the eCO2 response of root biomass in mature temperate forests.


Carbon Dioxide , Ecosystem , Carbon Dioxide/analysis , Uncertainty , Forests , Biomass , Soil
9.
Nanoscale ; 14(28): 9963-9988, 2022 Jul 21.
Article En | MEDLINE | ID: mdl-35815671

Propane dehydrogenation (PDH) is an industrial technology for direct propylene production, which has received extensive attention and realized large-scale application. At present, the commercial Pt/Cr-based catalysts suffer from fast deactivation and inferior stability resulting from active species sintering and coke depositing. To overcome the above problems, several strategies such as the modification of the support and the introduction of additives have been proposed to strengthen the catalytic performance and prolong the robust stability of Pt/Cr-based catalysts. This review firstly gives a brief description of the development of PDH and PDH catalysts. Then, the advanced research progress of supported noble metals and non-noble metals together with metal-free materials for PDH is systematically summarized along with the material design and active origin as well as the existing problems in the development of PDH catalysts. Furthermore, the review also emphasizes advanced synthetic strategies based on novel design of PDH catalysts with improved dehydrogenation activity and stability. Finally, the future challenges and directions of PDH catalysts are provided for the development of their further industrial application.

10.
Environ Sci Technol ; 56(16): 11189-11198, 2022 08 16.
Article En | MEDLINE | ID: mdl-35878000

Atmospheric aerosols are important drivers of Arctic climate change through aerosol-cloud-climate interactions. However, large uncertainties remain on the sources and processes controlling particle numbers in both fine and coarse modes. Here, we applied a receptor model and an explainable machine learning technique to understand the sources and drivers of particle numbers from 10 nm to 20 µm in Svalbard. Nucleation, biogenic, secondary, anthropogenic, mineral dust, sea salt and blowing snow aerosols and their major environmental drivers were identified. Our results show that the monthly variations in particles are highly size/source dependent and regulated by meteorology. Secondary and nucleation aerosols are the largest contributors to potential cloud condensation nuclei (CCN, particle number with a diameter larger than 40 nm as a proxy) in the Arctic. Nonlinear responses to temperature were found for biogenic, local dust particles and potential CCN, highlighting the importance of melting sea ice and snow. These results indicate that the aerosol factors will respond to rapid Arctic warming differently and in a nonlinear fashion.


Air Pollutants , Aerosols/analysis , Air Pollutants/analysis , Dust/analysis , Machine Learning , Particle Size , Svalbard
11.
Environ Res ; 208: 112672, 2022 05 15.
Article En | MEDLINE | ID: mdl-34999028

Regional transport is a key source of carbonaceous aerosol in many Chinese megacities including Beijing. The sources of carbonaceous aerosol in urban areas have been studied extensively but are poorly known in upwind rural areas. This work aims to quantify the contributions of fossil and non-fossil fuel emissions to carbonaceous aerosols at a rural site in North China Plain in winter 2016. We integrated online high resolution-time of flight-aerosol mass spectrometer (HR-TOF-AMS) observations and radiocarbon (14C) measurements of fine particles with Positive Matrix Factorization (PMF) analysis as well as Extended Gelencsér (EG) method. We found that fine particle concentration is much higher at the rural site than in Beijing during the campaign (Dec 7, 2016 to Jan 8, 2017). PMF analysis of the AMS data showed that coal-combustion related organic aerosol (CCOA + Oxidized CCOA) and more oxidized oxygenated organic aerosol (MO-OOA) contributed 48% and 30% of organic matter to non-refractory PM1 (NR-PM1) mass. About 2/3 of the OC and EC were from fossil-fuel combustion. The EG method, combining AMS-PMF and 14C data, showed that primary and secondary OC from fossil fuel contribute 35% and 22% to total carbon (TC), coal combustion emission dominates the fossil fuel sources, and biomass burning accounted for 21% of carbonaceous aerosol. In summary, our results confirm that fossil fuel combustion was the dominant source of carbonaceous aerosol during heavy pollution events in the rural areas. Significant emissions of solid fuel carbonaceous aerosols at rural areas can affect air quality in downwind cities such as Beijing and Tianjin, highlighting the benefits of energy transition from solid fuels to cleaner energy in rural areas.


Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , Carbon/analysis , China , Environmental Monitoring/methods , Fossil Fuels , Fossils , Particulate Matter/analysis , Seasons
12.
Environ Pollut ; 293: 118584, 2022 Jan 15.
Article En | MEDLINE | ID: mdl-34843856

Emergency responses to the COVID-19 pandemic led to major changes in travel behaviours and economic activities in 2020. Machine learning provides a reliable approach for assessing the contribution of these changes to air quality. This study investigates impacts of health protection measures upon air pollution and traffic emissions and estimates health and economic impacts arising from these changes during two national 'lockdown' periods in Oxford, UK. Air quality improvements were most marked during the first lockdown with reductions in observed NO2 concentrations of 38% (SD ± 24.0%) at roadside and 17% (SD ± 5.4%) at urban background locations. Observed changes in PM2.5, PM10 and O3 concentrations were not significant during first or second lockdown. Deweathering and detrending analyses revealed a 22% (SD ± 4.4%) reduction in roadside NO2 and 2% (SD ± 7.1%) at urban background with no significant changes in the second lockdown. Deweathered-detrended PM2.5 and O3 concentration changes were not significant, but PM10 increased in the second lockdown only. City centre traffic volume reduced by 69% and 38% in the first and second lockdown periods. Buses and passenger cars were the major contributors to NO2 emissions, with relative reductions of 56% and 77% respectively during the first lockdown, and less pronounced changes in the second lockdown. While car and bus NO2 emissions decreased during both lockdown periods, the overall contribution from buses increased relative to cars in the second lockdown. Sustained NO2 emissions reduction consistent with the first lockdown could prevent 48 lost life-years among the city population, with economic benefits of up to £2.5 million. Our findings highlight the critical importance of decoupling emissions changes from meteorological influences to avoid overestimation of lockdown impacts and indicate targeted emissions control measures will be the most effective strategy for achieving air quality and public health benefits in this setting.


Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/prevention & control , Communicable Disease Control , Environmental Monitoring , Humans , Pandemics , Particulate Matter/analysis , Public Health , SARS-CoV-2 , United Kingdom
13.
Chemosphere ; 288(Pt 1): 132377, 2022 Feb.
Article En | MEDLINE | ID: mdl-34600012

Volatile methyl siloxanes (VMS) have been widely used in personal care products and industrial applications, and are an important component of VOCs (volatile organic compounds) indoors. They have sufficiently long lifetimes to undergo long-range transport and to form secondary aerosols through atmospheric oxidation. To investigate these silicon-containing secondary organic aerosols (Si-SOA), we collected PM2.5 samples during 8th-21st August 2018 (summer) and 3rd-23rd January 2019 (winter) at an urban site of Beijing. As the oxidation of VMS mainly results in hydrophilic polar semi-volatile and non-volatile oxidation products, the differences between total water-soluble Si and total water-soluble inorganic Si were used to estimate water-soluble organic Si, considered to be secondary organic Si (SO-Si). The average concentrations of SO-Si during the summer and winter campaigns were 4.6 ± 3.7 and 13.2 ± 8.6 ng m-3, accounting for approximately 80.1 ± 10.1% and 80.2 ± 8.7% of the total water-soluble Si, and 1.2 ± 1.2% and 5.0 ± 6.9% of total Si in PM2.5, respectively. The estimated Si-SOA concentrations were 12.7 ± 10.2 ng m-3 and 36.6 ± 23.9 ng m-3 on average in summer and winter, which accounted for 0.06 ± 0.07% and 0.16 ± 0.22% of PM2.5 mass, but increased to 0.26% and 0.92% on certain days. We found that net solar radiation is positively correlated with SO-Si levels in the summer but not in winter, suggesting seasonally different formation mechanisms.


Air Pollutants , Volatile Organic Compounds , Aerosols/analysis , Air Pollutants/analysis , Beijing , Environmental Monitoring , Particulate Matter/analysis , Silicon , Volatile Organic Compounds/analysis
14.
Environ Sci Technol ; 55(24): 16339-16346, 2021 12 21.
Article En | MEDLINE | ID: mdl-34894668

A large fraction of secondary aerosol particles are liquid-liquid phase-separated with an organic shell and an inorganic core. This has the potential to regulate the hygroscopicity of such particles, with significant implications for their optical properties, reactivity, and lifetime. However, it is unclear how this phase separation affects the hygroscopic growth of the particles. Here, we showed a large variation in hygroscopic growth (e.g., 1.14-1.32 under a relative humidity (RH) of 90%) of particles from the forest and urban atmosphere, which had different average core-shell ratios. For this reason, a controlled laboratory experiment further quantifies the impact of the organic shell on particle growth with different RH values. Laboratory experiments demonstrated that (NH4)2SO4 particles with thicker secondary organic shells have a lower growth factor at an RH below 94%. Organic shells started to deliquesce first (RH > 50%) and the phase changes of sulfate cores from solid to liquid took place at an RH higher than 80% as deliquescence relative humidity of pure (NH4)2SO4. Our study provides the first direct evidence on an individual particle basis that hygroscopic growth behavior of phase-separated particles is dependent on the thickness of organic shells, highlighting the importance of organic coating in water uptake and possible heterogeneous reactions of the phase-separated particles.


Atmosphere , Water , Aerosols , Sulfates , Wettability
15.
Atmos Chem Phys ; 21(7): 5549-5573, 2021 Apr 12.
Article En | MEDLINE | ID: mdl-34462630

Epidemiological studies have consistently linked exposure to PM2.5 with adverse health effects. The oxidative potential (OP) of aerosol particles has been widely suggested as a measure of their potential toxicity. Several acellular chemical assays are now readily employed to measure OP; however, uncertainty remains regarding the atmospheric conditions and specific chemical components of PM2.5 that drive OP. A limited number of studies have simultaneously utilised multiple OP assays with a wide range of concurrent measurements and investigated the seasonality of PM2.5 OP. In this work, filter samples were collected in winter 2016 and summer 2017 during the atmospheric pollution and human health in a Chinese megacity campaign (APHH-Beijing), and PM2.5 OP was analysed using four acellular methods: ascorbic acid (AA), dithiothreitol (DTT), 2,7-dichlorofluorescin/hydrogen peroxidase (DCFH) and electron paramagnetic resonance spectroscopy (EPR). Each assay reflects different oxidising properties of PM2.5, including particle-bound reactive oxygen species (DCFH), superoxide radical production (EPR) and catalytic redox chemistry (DTT/AA), and a combination of these four assays provided a detailed overall picture of the oxidising properties of PM2.5 at a central site in Beijing. Positive correlations of OP (normalised per volume of air) of all four assays with overall PM2.5 mass were observed, with stronger correlations in winter compared to summer. In contrast, when OP assay values were normalised for particle mass, days with higher PM2.5 mass concentrations (µgm-3) were found to have lower mass-normalised OP values as measured by AA and DTT. This finding supports that total PM2.5 mass concentrations alone may not always be the best indicator for particle toxicity. Univariate analysis of OP values and an extensive range of additional measurements, 107 in total, including PM2.5 composition, gas-phase composition and meteorological data, provided detailed insight into the chemical components and atmospheric processes that determine PM2.5 OP variability. Multivariate statistical analyses highlighted associations of OP assay responses with varying chemical components in PM2.5 for both mass- and volume-normalised data. AA and DTT assays were well predicted by a small set of measurements in multiple linear regression (MLR) models and indicated fossil fuel combustion, vehicle emissions and biogenic secondary organic aerosol (SOA) as influential particle sources in the assay response. Mass MLR models of OP associated with compositional source profiles predicted OP almost as well as volume MLR models, illustrating the influence of mass composition on both particle-level OP and total volume OP. Univariate and multivariate analysis showed that different assays cover different chemical spaces, and through comparison of mass- and volume-normalised data we demonstrate that mass-normalised OP provides a more nuanced picture of compositional drivers and sources of OP compared to volume-normalised analysis. This study constitutes one of the most extensive and comprehensive composition datasets currently available and provides a unique opportunity to explore chemical variations in PM2.5 and how they affect both PM2.5 OP and the concentrations of particle-bound reactive oxygen species.

16.
Environ Pollut ; 289: 117932, 2021 Nov 15.
Article En | MEDLINE | ID: mdl-34426203

This research apportioned size-resolved particulate matter (PM) contributions in a megacity in northern China based on a full year of measurements of both inorganic and organic markers. Ions, elements, carbon fractions, n-alkanes, polycyclic aromatic hydrocarbons (PAHs), hopanes and steranes in 9 p.m. size fractions were analyzed. High molecular weight PAHs concentrated in fine PM, while most other organic compounds showed two peaks. Both two-way and three-way receptor models were used for source apportionment of PM in different size ranges. The three-way receptor model gave a clearer separation of factors than the two-way model, because it uses a combination of chemical composition and size distributions, so that factors with similar composition but distinct size distributions (like more mature and less mature coal combustion) can be resolved. The three-way model resolved six primary and three secondary factors. Gasoline vehicles and coal and biomass combustion, nitrate and high relative humidity related secondary aerosol, and resuspended dust and diesel vehicles (exhaust and non-exhaust) are the top two contributors to pseudo-ultrafine (<0.43 µm), fine (0.43-2.1 µm) and coarse mode (>2.1 µm) PM, respectively. Mass concentration of PM from coal and biomass combustion, industrial emissions, and diesel vehicle sources showed a bimodal size distribution, but gasoline vehicles and resuspended dust exhibited a peak in the fine and coarse mode, separately. Mass concentration of sulphate, nitrate and secondary organic aerosol exhibited a bimodal distribution and were correlated with temperature, indicating strong photochemical processing and repartitioning. High relative humidity related secondary aerosol was strongly associated with size shifts of PM, NO3- and SO42- from the usual 0.43-0.65 µm to 1.1-2.1 µm. Our results demonstrated the dominance of primary combustion sources in the <0.43 µm particle mass, in contrast to that of secondary aerosol in fine particle mass, and dust in coarse particle mass in the Northern China megacity.


Air Pollutants , Particulate Matter , Air Pollutants/analysis , China , Environmental Monitoring , Particle Size , Particulate Matter/analysis , Vehicle Emissions/analysis
17.
Chemosphere ; 278: 130429, 2021 Sep.
Article En | MEDLINE | ID: mdl-34126680

Eighteen polycyclic aromatic hydrocarbons (PAHs), 24 n-alkanes, 7 hopanes, 2 cholestanes, inorganic ions, elements and carbon fractions were analyzed in real-world source samples of PM2.5 (fine particulate matter) from traffic emissions (gasoline vehicles-TGV, diesel vehicles-TDV, diesel ship-TDS, and heavy oil ships-THOS), coal combustion (coal-fired industrial boilers-CIB, power plants-CPP, and residential stoves-CRS), industrial process emissions (cement industry-IPCI, and steel industry-IPSI), and dust (soil dust-DSD, road dust-DRD, and construction dust-DCD). High molecular weight (sum of five to seven rings) PAHs accounted for higher fractions for TGV (80%) and THS (61%) than for TDV, TDS and coal combustion sources (31%-47%). Hopane ratios (C29αß/C30αß) in coal related sources were mostly higher than 1, whereas that of traffic emissions was lower than 1. The homohopane index [S/(S + R)], which is a useful index for identifying the maturity of fuels, ranked as TGV > THS > TDV and TDS > coal combustion. For n-alkane profiles, coal related sources showed peaks at C16-C19, TDV, TDS and THS showed similar peaks at C17-C25, but peaks for DSD (C30-C32), DRD (C17-C20, C24-25 and C30-C31), CRS (C16-C18 and C28-C29) and TGV (C24-C26) are different. Organic markers were selected which can best differentiate the subtypes within source categories by considering the component levels and variations. Through a comprehensive review, we showed that it is inadvisable to directly use diagnostic ratios for source attribution, although their trends can assist in identifying influential sources.


Air Pollutants , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Coal/analysis , Dust/analysis , Environmental Monitoring , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Vehicle Emissions/analysis
18.
Geophys Res Lett ; 48(11): e2021GL093403, 2021 Jun 16.
Article En | MEDLINE | ID: mdl-34149113

Responding to the 2020 COVID-19 outbreak, China imposed an unprecedented lockdown producing reductions in air pollutant emissions. However, the lockdown driven air pollution changes have not been fully quantified. We applied machine learning to quantify the effects of meteorology on surface air quality data in 31 major Chinese cities. The meteorologically normalized NO2, O3, and PM2.5 concentrations changed by -29.5%, +31.2%, and -7.0%, respectively, after the lockdown began. However, part of this effect was also associated with emission changes due to the Chinese Spring Festival, which led to ∼14.1% decrease in NO2, ∼6.6% increase in O3 and a mixed effect on PM2.5 in the studied cities that largely resulted from festival associated fireworks. After decoupling the weather and Spring Festival effects, changes in air quality attributable to the lockdown were much smaller: -15.4%, +24.6%, and -9.7% for NO2, O3, and PM2.5, respectively.

19.
Chemosphere ; 274: 129913, 2021 Jul.
Article En | MEDLINE | ID: mdl-33979925

Increasing emissions from sources such as construction and burning of biomass from crop residues, roadside and municipal solid waste have led to a rapid increase in the atmospheric concentrations of fine particulate matter (≤2.5 µm; PM2.5) over many Indian cities. Analyses of their chemical profiles are important for receptor models to accurately estimate the contributions from different sources. We have developed chemical source profiles for five important pollutant sources - construction (CON), paved road dust (PRD), roadside biomass burning (RBB), solid waste burning (SWB), and crop residue burning (CPB) - during three intensive campaigns (winter, summer and post-monsoon) in and around Delhi. We obtained chemical characterisations of source profiles incorporating carbonaceous material such as organic carbon (OC) and elemental carbon (EC), water-soluble ions (F-, Cl-, NO2-, NO3-, SO42-, PO43-, Na+ and NH4+), and elements (Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Rb, Sr, Ba, and Pb). CON was dominated by the most abundant elements, K, Si, Fe, Al, and Ca. PRD was also dominated by crustal elements, accounting for 91% of the total analysed elements. RBB, SWB and CPB profiles were dominated by organic matter, which accounted for 94%, 86.2% and 86% of the total PM2.5, respectively. The database of PM emission profiles developed from the sources investigated can be used to assist source apportionment studies for accurate quantification of the causes of air pollution and hence assist governmental bodies in formulating relevant countermeasures.


Air Pollutants , Air Pollutants/analysis , Cities , Environmental Monitoring , India , Particle Size , Particulate Matter/analysis , Seasons , Vehicle Emissions/analysis
...