Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nutrients ; 14(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35956344

RESUMEN

Internet-based applications (apps) are rapidly developing in the e-Health era to assess the dietary intake of essential macro-and micro-nutrients for precision nutrition. We, therefore, validated the accuracy of an internet-based app against the Nutrition Data System for Research (NDSR), assessing these essential nutrients among various social-ethnic diet types. The agreement between the two measures using intraclass correlation coefficients was good (0.85) for total calories, but moderate for caloric ranges outside of <1000 (0.75) and >2000 (0.57); and good (>0.75) for most macro- (average: 0.85) and micro-nutrients (average: 0.83) except cobalamin (0.73) and calcium (0.51). The app underestimated nutrients that are associated with protein and fat (protein: −5.82%, fat: −12.78%, vitamin B12: −13.59%, methionine: −8.76%, zinc: −12.49%), while overestimated nutrients that are associated with carbohydrate (fiber: 6.7%, B9: 9.06%). Using artificial intelligence analytics, we confirmed the factors that could contribute to the differences between the two measures for various essential nutrients, and they included caloric ranges; the differences between the two measures for carbohydrates, protein, and fat; and diet types. For total calories, as an example, the source factors that contributed to the differences between the two measures included caloric range (<1000 versus others), fat, and protein; for cobalamin: protein, American, and Japanese diets; and for folate: caloric range (<1000 versus others), carbohydrate, and Italian diet. In the e-Health era, the internet-based app has the capacity to enhance precision nutrition. By identifying and integrating the effects of potential contributing factors in the algorithm of output readings, the accuracy of new app measures could be improved.


Asunto(s)
Inteligencia Artificial , Telemedicina , Carbohidratos , Dieta , Ingestión de Energía , Internet , Nutrientes , Estados Unidos , United States Department of Agriculture , Vitamina B 12
2.
J Pers Med ; 12(5)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35629083

RESUMEN

Obesity with adiposity is a common disorder in modern days, influenced by environmental factors such as eating and lifestyle habits and affecting the epigenetics of adipose-based gene regulations and metabolic pathways in colorectal cancer (CRC). We compared epigenetic changes of differentially methylated regions (DMR) of genes in colon tissues of 225 colon cancer cases (154 non-obese and 71 obese) and 15 healthy non-obese controls by accessing The Cancer Genome Atlas (TCGA) data. We applied machine-learning-based analytics including generalized regression (GR) as a confirmatory validation model to identify the factors that could contribute to DMRs impacting colon cancer to enhance prediction accuracy. We found that age was a significant predictor in obese cancer patients, both alone (p = 0.003) and interacting with hypomethylated DMRs of ZBTB46, a tumor suppressor gene (p = 0.008). DMRs of three additional genes: HIST1H3I (p = 0.001), an oncogene with a hypomethylated DMR in the promoter region; SRGAP2C (p = 0.006), a tumor suppressor gene with a hypermethylated DMR in the promoter region; and NFATC4 (p = 0.006), an adipocyte differentiating oncogene with a hypermethylated DMR in an intron region, are also significant predictors of cancer in obese patients, independent of age. The genes affected by these DMR could be potential novel biomarkers of colon cancer in obese patients for cancer prevention and progression.

3.
Nutrients ; 14(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35276892

RESUMEN

In preparation for personalized nutrition, an accurate assessment of dietary intakes on key essential nutrients using smartphones can help promote health and reduce health risks across vulnerable populations. We, therefore, validated the accuracy of a mobile application (app) against Food Frequency Questionnaire (FFQ) using artificial intelligence (AI) machine-learning-based analytics, assessing key macro- and micro-nutrients across various modern diets. We first used Bland and Altman analysis to identify and visualize the differences between the two measures. We then applied AI-based analytics to enhance prediction accuracy, including generalized regression to identify factors that contributed to the differences between the two measures. The mobile app underestimated most macro- and micro-nutrients compared to FFQ (ranges: -5% for total calories, -19% for cobalamin, -33% for vitamin E). The average correlations between the two measures were 0.87 for macro-nutrients and 0.84 for micro-nutrients. Factors that contributed to the differences between the two measures using total calories as an example, included caloric range (1000-2000 versus others), carbohydrate, and protein; for cobalamin, included caloric range, protein, and Chinese diet. Future studies are needed to validate actual intakes and reporting of various diets, and to examine the accuracy of mobile App. Thus, a mobile app can be used to support personalized nutrition in the mHealth era, considering adjustments with sources that could contribute to the inaccurate estimates of nutrients.


Asunto(s)
Aplicaciones Móviles , Telemedicina , Inteligencia Artificial , Dieta , Promoción de la Salud , Nutrientes , Encuestas y Cuestionarios
4.
Oncotarget ; 9(90): 36251, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30546841

RESUMEN

[This corrects the article DOI: 10.18632/oncotarget.25693.].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...