Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Development ; 143(5): 822-30, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26811377

RESUMEN

Vertebrate somitogenesis is regulated by a segmentation clock. Clock-linked genes exhibit cyclic expression, with a periodicity matching the rate of somite production. In mice, lunatic fringe (Lfng) expression oscillates, and LFNG protein contributes to periodic repression of Notch signaling. We hypothesized that rapid LFNG turnover could be regulated by protein processing and secretion. Here, we describe a novel Lfng allele (Lfng(RLFNG)), replacing the N-terminal sequences of LFNG, which allow for protein processing and secretion, with the N-terminus of radical fringe (a Golgi-resident protein). This allele is predicted to prevent protein secretion without altering the activity of LFNG, thus increasing the intracellular half-life of the protein. This allele causes dominant skeletal and somite abnormalities that are distinct from those seen in Lfng loss-of-function embryos. Expression of clock-linked genes is perturbed and mature Hes7 transcripts are stabilized in the presomitic mesoderm of mutant mice, suggesting that both transcriptional and post-transcriptional regulation of clock components are perturbed by RLFNG expression. Contrasting phenotypes in the segmentation clock and somite patterning of mutant mice suggest that LFNG protein may have context-dependent effects on Notch activity.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Glicosiltransferasas/fisiología , Proteínas/genética , Somitos/fisiología , Alelos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Tipificación del Cuerpo/genética , Femenino , Perfilación de la Expresión Génica , Genotipo , Glucosiltransferasas , Glicosiltransferasas/genética , Heterocigoto , Hibridación in Situ , Masculino , Mesodermo/metabolismo , Ratones , Mutación , Fenotipo , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Receptores Notch/metabolismo , Transducción de Señal
2.
Dev Dyn ; 245(1): 47-55, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26264370

RESUMEN

BACKGROUND: During primitive hematopoiesis in Xenopus, cebpa and spib expressing myeloid cells emerge from the anterior ventral blood island. Primitive myeloid cells migrate throughout the embryo and are critical for immunity, healing, and development. Although definitive hematopoiesis has been studied extensively, molecular mechanisms leading to the migration of primitive myelocytes remain poorly understood. We hypothesized these cells have specific extracellular matrix modifying and cell motility gene expression. RESULTS: In situ hybridization screens of transcripts expressed in Xenopus foregut mesendoderm at stage 23 identified seven genes with restricted expression in primitive myeloid cells: destrin; coronin actin binding protein, 1a; formin-like 1; ADAM metallopeptidase domain 28; cathepsin S; tissue inhibitor of metalloproteinase-1; and protein tyrosine phosphatase nonreceptor 6. A detailed in situ hybridization analysis revealed these genes are initially expressed in the aVBI but become dispersed throughout the embryo as the primitive myeloid cells become migratory, similar to known myeloid markers. Morpholino-mediated loss-of-function and mRNA-mediated gain-of-function studies revealed the identified genes are downstream of Spib.a and Cebpa, key transcriptional regulators of the myeloid lineage. CONCLUSIONS: We have identified genes specifically expressed in migratory primitive myeloid progenitors, providing tools to study how different gene networks operate in these primitive myelocytes during development and immunity.


Asunto(s)
Linaje de la Célula/genética , Movimiento Celular/genética , Células Mieloides/citología , Xenopus laevis/genética , Animales , Destrina/genética , Destrina/metabolismo , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Células Mieloides/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo
3.
Dev Dyn ; 244(1): 69-85, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25156440

RESUMEN

BACKGROUND: Respiratory system development is regulated by a complex series of endoderm-mesoderm interactions that are not fully understood. Recently Xenopus has emerged as an alternative model to investigate early respiratory system development, but the extent to which the morphogenesis and molecular pathways involved are conserved between Xenopus and mammals has not been systematically documented. RESULTS: In this study, we provide a histological and molecular atlas of Xenopus respiratory system development, focusing on Nkx2.1+ respiratory cell fate specification in the developing foregut. We document the expression patterns of Wnt/ß-catenin, fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) signaling components in the foregut and show that the molecular mechanisms of respiratory lineage induction are remarkably conserved between Xenopus and mice. Finally, using several functional experiments we refine the epistatic relationships among FGF, Wnt, and BMP signaling in early Xenopus respiratory system development. CONCLUSIONS: We demonstrate that Xenopus trachea and lung development, before metamorphosis, is comparable at the cellular and molecular levels to embryonic stages of mouse respiratory system development between embryonic days 8.5 and 10.5. This molecular atlas provides a fundamental starting point for further studies using Xenopus as a model to define the conserved genetic programs controlling early respiratory system development.


Asunto(s)
Embrión no Mamífero/embriología , Epistasis Genética/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Metamorfosis Biológica/fisiología , Sistema Respiratorio/embriología , Vía de Señalización Wnt/fisiología , Animales , Embrión no Mamífero/citología , Ratones , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Sistema Respiratorio/citología , Factor Nuclear Tiroideo 1 , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Proteínas de Xenopus , Xenopus laevis , beta Catenina/genética , beta Catenina/metabolismo
4.
Dev Biol ; 388(2): 159-69, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24560643

RESUMEN

The segmental structure of the axial skeleton is formed during somitogenesis. During this process, paired somites bud from the presomitic mesoderm (PSM), in a process regulated by a genetic clock called the segmentation clock. The Notch pathway and the Notch modulator Lunatic fringe (Lfng) play multiple roles during segmentation. Lfng oscillates in the posterior PSM as part of the segmentation clock, but is stably expressed in the anterior PSM during presomite patterning. We previously found that mice lacking overt oscillatory Lfng expression in the posterior PSM (Lfng(∆FCE)) exhibit abnormal anterior development but relatively normal posterior development. This suggests distinct requirements for segmentation clock activity during the formation of the anterior skeleton (primary body formation), compared to the posterior skeleton and tail (secondary body formation). To build on these findings, we created an allelic series that progressively lowers Lfng levels in the PSM. Interestingly, we find that further reduction of Lfng expression levels in the PSM does not increase disruption of anterior development. However tail development is increasingly compromised as Lfng levels are reduced, suggesting that primary body formation is more sensitive to Lfng dosage than is secondary body formation. Further, we find that while low levels of oscillatory Lfng in the posterior PSM are sufficient to support relatively normal posterior development, the period of the segmentation clock is increased when the amplitude of Lfng oscillations is low. These data support the hypothesis that there are differential requirements for oscillatory Lfng during primary and secondary body formation and that posterior development is less sensitive to overall Lfng levels. Further, they suggest that modulation of the Notch signaling by Lfng affects the clock period during development.


Asunto(s)
Desarrollo Óseo/genética , Dosificación de Gen , Glicosiltransferasas/genética , Somitos/crecimiento & desarrollo , Animales , Ratones , Ratones Transgénicos
5.
BMC Dev Biol ; 12: 27, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22988910

RESUMEN

BACKGROUND: FGF signaling plays numerous roles during organogenesis of the embryonic gut tube. Mouse explant studies suggest that different thresholds of FGF signaling from the cardiogenic mesoderm induce lung, liver, and pancreas lineages from the ventral foregut progenitor cells. The mechanisms that regulate FGF dose in vivo are unknown. Here we use Xenopus embryos to examine the hypothesis that a prolonged duration of FGF signaling from the mesoderm is required to induce foregut organs. RESULTS: We show that both mesoderm and FGF signaling are required for liver and lung development in Xenopus; formally demonstrating that this important step in organ induction is conserved with other vertebrate species. Prolonged contact with the mesoderm and persistent FGF signaling through both MEK and PI3K over an extended period of time are required for liver and lung specification. Inhibition of FGF signaling results in reduced liver and lung development, with a modest expansion of the pancreas/duodenum progenitor domain. Hyper-activation of FGF signaling has the opposite effect expanding liver and lung gene expression and repressing pancreatic markers. We show that FGF signaling is cell autonomously required in the endoderm and that a dominant negative FGF receptor decreases the ability of ventral foregut progenitor cells to contribute to the lung and liver buds. CONCLUSIONS: These results suggest that the liver and lungs are specified at progressively later times in development requiring mesoderm contact for different lengths of time. Our data suggest that this is achieved at least in part through prolonged FGF signaling. In addition to providing a foundation for further mechanistic studies on foregut organogenesis using the experimental advantages of the Xenopus system, these data have implications for the directed differentiation of stem cells into foregut lineages.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Hígado/embriología , Pulmón/embriología , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Animales , Apoptosis , Proliferación Celular , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Endodermo/embriología , Endodermo/metabolismo , Hibridación in Situ , Hígado/citología , Hígado/metabolismo , Pulmón/citología , Pulmón/metabolismo , Sistema de Señalización de MAP Quinasas , Organogénesis , Páncreas/embriología , Fosfatidilinositol 3-Quinasas/metabolismo , Técnicas de Cultivo de Tejidos
6.
Dev Cell ; 23(2): 292-304, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22863744

RESUMEN

The liver, pancreas, and lungs are induced from endoderm progenitors by a series of dynamic growth factor signals from the mesoderm, but how the temporal-spatial activity of these signals is controlled is poorly understood. We have identified an extracellular regulatory loop required for robust bone morphogenetic protein (BMP) signaling in the Xenopus foregut. We show that BMP signaling is required to maintain foregut progenitors and induce expression of the secreted frizzled related protein Sizzled (Szl) and the extracellular metalloprotease Tolloid-like 1 (Tll1). Szl negatively regulates Tll activity to control deposition of a fibronectin (FN) matrix between the mesoderm and endoderm, which is required to maintain BMP signaling. Foregut-specific Szl depletion results in a loss of the FN matrix and failure to maintain robust pSmad1 levels, causing a loss of foregut gene expression and organ agenesis. These results have implications for BMP signaling in diverse contexts and the differentiation of foregut tissue from stem cells.


Asunto(s)
Fibronectinas/metabolismo , Mucosa Intestinal/metabolismo , Transducción de Señal , Células Madre/metabolismo , Metaloproteinasas Similares a Tolloid/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Linaje de la Célula , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Intestinos/embriología , Unión Proteica , Células Madre/citología , Metaloproteinasas Similares a Tolloid/genética , Proteínas de Xenopus/genética , Xenopus laevis/embriología , Xenopus laevis/genética
7.
Dev Dyn ; 238(7): 1803-12, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19479951

RESUMEN

Tight regulation of Notch pathway signaling is important in many aspects of embryonic development. Notch signaling can be modulated by expression of fringe genes, encoding glycosyltransferases that modify EGF repeats in the Notch receptor. Although Lunatic fringe (Lfng) has been shown to play important roles in vertebrate segmentation, comparatively little is known regarding the developmental functions of the other vertebrate fringe genes, Radical fringe (Rfng) and Manic fringe (Mfng). Here we report that Mfng expression is not required for embryonic development. Further, we find that despite significant overlap in expression patterns, we detect no obvious synergistic defects in mice in the absence of two, or all three, fringe genes during development of the axial skeleton, limbs, hindbrain, and cranial nerves.


Asunto(s)
Tipificación del Cuerpo/genética , Huesos/embriología , Desarrollo Embrionario/genética , Extremidades/embriología , Proteínas/fisiología , Rombencéfalo/embriología , Animales , Embrión de Mamíferos , Fertilidad/genética , Fertilidad/fisiología , Viabilidad Fetal/genética , Viabilidad Fetal/fisiología , Eliminación de Gen , Glucosiltransferasas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Familia de Multigenes/genética , Familia de Multigenes/fisiología , Proteínas/genética
8.
Biochim Biophys Acta ; 1783(12): 2384-90, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18706457

RESUMEN

During vertebrate segmentation, oscillatory activation of Notch signaling is important in the clock that regulates the timing of somitogenesis. In mice, the cyclic activation of NOTCH1 requires the periodic expression of Lunatic fringe (Lfng). For LFNG to play a role in the segmentation clock, its cyclic transcription must be coupled with post-translational mechanisms that confer a short protein half-life. LFNG protein is cleaved and released into the extracellular space, and here we examine the hypothesis that this secretion contributes to a short LFNG intracellular half-life, facilitating rapid oscillations within the segmentation clock. We localize N-terminal protein sequences that control the secretory behavior of fringe proteins and find that LFNG processing is promoted by specific proprotein convertases including furin and SPC6. Mutations that alter LFNG processing increase its intracellular half-life without preventing its secretion. These mutations do not affect the specificity of LFNG function in the Notch pathway, thus regulation of protein half-life affects the duration of LFNG activity without altering its function. Finally, the embryonic expression pattern of Spc6 suggests a role in terminating LFNG activity during somite patterning. These results have important implications for the mechanisms that contribute to the tight control of Notch signaling during vertebrate segmentation.


Asunto(s)
Furina/metabolismo , Glicosiltransferasas/fisiología , Proproteína Convertasa 5/metabolismo , Procesamiento Proteico-Postraduccional , Somitos/fisiología , Fosfatasa Alcalina/metabolismo , Animales , Western Blotting , Tipificación del Cuerpo , Proteínas de Unión al Calcio/metabolismo , Cicloheximida/farmacología , Técnica del Anticuerpo Fluorescente , Furina/genética , Semivida , Hibridación in Situ , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Mutación/genética , Proproteína Convertasa 5/genética , Receptor Notch1/metabolismo , Proteínas Serrate-Jagged
9.
Development ; 135(5): 899-908, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18234727

RESUMEN

The Notch pathway plays multiple roles during vertebrate somitogenesis, functioning in the segmentation clock and during rostral/caudal (R/C) somite patterning. Lunatic fringe (Lfng) encodes a glycosyltransferase that modulates Notch signaling, and its expression patterns suggest roles in both of these processes. To dissect the roles played by Lfng during somitogenesis, a novel allele was established that lacks cyclic Lfng expression within the segmentation clock, but that maintains expression during R/C somite patterning (Lfng(DeltaFCE1)). In the absence of oscillatory Lfng expression, Notch activation is ubiquitous in the PSM of Lfng(DeltaFCE1) embryos. Lfng(DeltaFCE1) mice exhibit severe segmentation phenotypes in the thoracic and lumbar skeleton. However, the sacral and tail vertebrae are only minimally affected in Lfng(DeltaFCE1) mice, suggesting that oscillatory Lfng expression and cyclic Notch activation are important in the segmentation of the thoracic and lumbar axial skeleton (primary body formation), but are largely dispensable for the development of sacral and tail vertebrae (secondary body formation). Furthermore, we find that the loss of cyclic Lfng has distinct effects on the expression of other clock genes during these two stages of development. Finally, we find that Lfng(DeltaFCE1) embryos undergo relatively normal R/C somite patterning, confirming that Lfng roles in the segmentation clock are distinct from its functions in somite patterning. These results suggest that the segmentation clock may employ varied regulatory mechanisms during distinct stages of anterior/posterior axis development, and uncover previously unappreciated connections between the segmentation clock, and the processes of primary and secondary body formation.


Asunto(s)
Tipificación del Cuerpo/fisiología , Desarrollo Óseo , Huesos/embriología , Glicosiltransferasas/genética , Animales , Animales Recién Nacidos , Huesos/anomalías , ADN/genética , Regulación del Desarrollo de la Expresión Génica , Genotipo , Glicosiltransferasas/deficiencia , Hibridación in Situ , Ratones , Oscilometría , Receptores Notch/genética , Receptores Notch/fisiología , Eliminación de Secuencia , Columna Vertebral/anomalías , Saco Vitelino/fisiología
10.
Birth Defects Res C Embryo Today ; 81(2): 121-33, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17600784

RESUMEN

The segmental structure of the vertebrate body plan is most evident in the axial skeleton. The regulated generation of somites, a process called somitogenesis, underlies the vertebrate body plan and is crucial for proper skeletal development. A genetic clock regulates this process, controlling the timing of somite development. Molecular evidence for the existence of the segmentation clock was first described in the expression of Notch signaling pathway members, several of which are expressed in a cyclic fashion in the presomitic mesoderm (PSM). The Wnt and fibroblast growth factor (FGF) pathways have also recently been linked to the segmentation clock, suggesting that a complex, interconnected network of three signaling pathways regulates the timing of somitogenesis. Mutations in genes that have been linked to the clock frequently cause abnormal segmentation in model organisms. Additionally, at least two human disorders, spondylocostal dysostosis (SCDO) and Alagille syndrome (AGS), are caused by mutations in Notch pathway genes and exhibit vertebral column defects, suggesting that mutations that disrupt segmentation clock function in humans can cause congenital skeletal defects. Thus, it is clear that the correct, cyclic function of the Notch pathway within the vertebrate segmentation clock is essential for proper somitogenesis. In the future, with a large number of additional cyclic genes recently identified, the complex interactions between the various signaling pathways making up the segmentation clock will be elucidated and refined.


Asunto(s)
Relojes Biológicos/genética , Enfermedades del Desarrollo Óseo/etiología , Huesos/anomalías , Regulación del Desarrollo de la Expresión Génica , Receptores Notch/metabolismo , Transducción de Señal , Síndrome de Alagille/etiología , Síndrome de Alagille/genética , Animales , Tipificación del Cuerpo/genética , Enfermedades del Desarrollo Óseo/genética , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptores Notch/genética , Somitos , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...