Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
APL Bioeng ; 7(2): 026104, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37206658

RESUMEN

Asthma is often characterized by tissue-level mechanical phenotypes that include remodeling of the airway and an increase in airway tightening, driven by the underlying smooth muscle. Existing therapies only provide symptom relief and do not improve the baseline narrowing of the airway or halt progression of the disease. To investigate such targeted therapeutics, there is a need for models that can recapitulate the 3D environment present in this tissue, provide phenotypic readouts of contractility, and be easily integrated into existing assay plate designs and laboratory automation used in drug discovery campaigns. To address this, we have developed DEFLCT, a high-throughput plate insert that can be paired with standard labware to easily generate high quantities of microscale tissues in vitro for screening applications. Using this platform, we exposed primary human airway smooth muscle cell-derived microtissues to a panel of six inflammatory cytokines present in the asthmatic niche, identifying TGF-ß1 and IL-13 as inducers of a hypercontractile phenotype. RNAseq analysis further demonstrated enrichment of contractile and remodeling-relevant pathways in TGF-ß1 and IL-13 treated tissues as well as pathways generally associated with asthma. Screening of 78 kinase inhibitors on TGF-ß1 treated tissues suggests that inhibition of protein kinase C and mTOR/Akt signaling can prevent this hypercontractile phenotype from emerging, while direct inhibition of myosin light chain kinase does not. Taken together, these data establish a disease-relevant 3D tissue model for the asthmatic airway, which combines niche specific inflammatory cues and complex mechanical readouts that can be utilized in drug discovery efforts.

2.
EMBO Rep ; 22(9): e51806, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34309175

RESUMEN

Differentiated cells across multiple species and organs can re-enter the cell cycle to aid in injury-induced tissue regeneration by a cellular program called paligenosis. Here, we show that activating transcription factor 3 (ATF3) is induced early during paligenosis in multiple cellular contexts, transcriptionally activating the lysosomal trafficking gene Rab7b. ATF3 and RAB7B are upregulated in gastric and pancreatic digestive-enzyme-secreting cells at the onset of paligenosis Stage 1, when cells massively induce autophagic and lysosomal machinery to dismantle differentiated cell morphological features. Their expression later ebbs before cells enter mitosis during Stage 3. Atf3-/- mice fail to induce RAB7-positive autophagic and lysosomal vesicles, eventually causing increased death of cells en route to Stage 3. Finally, we observe that ATF3 is expressed in human gastric metaplasia and during paligenotic injury across multiple other organs and species. Thus, our findings indicate ATF3 is an evolutionarily conserved gene orchestrating the early paligenotic autodegradative events that must occur before cells are poised to proliferate and contribute to tissue repair.


Asunto(s)
Factor de Transcripción Activador 3 , Plasticidad de la Célula , Factor de Transcripción Activador 3/genética , Animales , Ciclo Celular , Diferenciación Celular , Metaplasia/genética , Ratones
3.
J Biomech Eng ; 142(4)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31536113

RESUMEN

Trans-synovial solute transport plays a critical role in the clearance of intra-articularly (IA) delivered drugs. In this study, we present a computational finite element model (FEM) of solute transport through the synovium validated by experiments on synovial explants. Unsteady diffusion of urea, a small uncharged molecule, was measured through devitalized porcine and human synovium using custom-built diffusion chambers. A multiphasic computational model was constructed and optimized with the experimental data to extract effective diffusivity for urea within the synovium. A monotonic decrease in urea concentration was observed in the donor bath over time, with an effective diffusivity found to be an order of magnitude lower in synovium versus that measured in free solution. Parametric studies incorporating an intimal cell layer with varying thickness and varying effective diffusivities were performed, revealing a dependence of drug clearance kinetics on both parameters. The findings of this study indicate that the synovial matrix impedes urea solute transport out of the joint with little retention of the solute in the matrix.


Asunto(s)
Análisis de Elementos Finitos , Membrana Sinovial , Animales , Transporte Biológico , Cartílago Articular , Difusión , Modelos Biológicos , Porcinos
4.
mBio ; 10(5)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31615966

RESUMEN

Osteomyelitis (OM), or inflammation of bone tissue, occurs most frequently as a result of bacterial infection and severely perturbs bone structure. OM is predominantly caused by Staphylococcus aureus, and even with proper treatment, OM has a high rate of recurrence and chronicity. While S. aureus has been shown to infect osteoblasts, it remains unclear whether osteoclasts (OCs) are also a target of intracellular infection. Here, we demonstrate the ability of S. aureus to intracellularly infect and divide within OCs. OCs were differentiated from bone marrow macrophages (BMMs) by exposure to receptor activator of nuclear factor kappa-B ligand (RANKL). By utilizing an intracellular survival assay and flow cytometry, we found that at 18 h postinfection the intracellular burden of S. aureus increased dramatically in cells with at least 2 days of RANKL exposure, while the bacterial burden decreased in BMMs. To further explore the signals downstream of RANKL, we manipulated factors controlling OC differentiation, NFATc1 and alternative NF-κB, and found that intracellular bacterial growth correlates with NFATc1 levels in RANKL-treated cells. Confocal and time-lapse microscopy in mature OCs showed a range of intracellular infection that correlated inversely with S. aureus-phagolysosome colocalization. The propensity of OCs to become infected, paired with their diminished bactericidal capacity compared to BMMs, could promote OM progression by allowing S. aureus to evade initial immune regulation and proliferate at the periphery of lesions where OCs are most abundant.IMPORTANCE The inflammation of bone tissue is called osteomyelitis, and most cases are caused by an infection with the bacterium Staphylococcus aureus To date, the bone-building cells, osteoblasts, have been implicated in the progression of these infections, but not much is known about how the bone-resorbing cells, osteoclasts, participate. In this study, we show that S. aureus can infect osteoclasts and proliferate inside these cells, whereas bone-residing macrophages, immune cells related to osteoclasts, destroy the bacteria. These findings elucidate a unique role for osteoclasts to harbor bacteria during infection, providing a possible mechanism by which bacteria could evade destruction by the immune system.


Asunto(s)
Osteoclastos/microbiología , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidad , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Diferenciación Celular , Células Cultivadas , Femenino , Macrófagos/metabolismo , Masculino , Ratones , Osteoblastos/microbiología , Osteomielitis/metabolismo , Osteomielitis/microbiología , Fagosomas/metabolismo , Ligando RANK/metabolismo , Staphylococcus aureus/efectos de los fármacos
5.
J Autoimmun ; 101: 94-108, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31018906

RESUMEN

Store-operated calcium entry (SOCE) modulates cytosolic calcium in multiple cells. Endoplasmic reticulum (ER)-localized STIM1 and plasma membrane (PM)-localized ORAI1 are two main components of SOCE. STIM1:ORAI1 association requires STIM1 oligomerization, its re-distribution to ER-PM junctions, and puncta formation. However, little is known about the negative regulation of these steps to prevent calcium overload. Here, we identified Tmem178 as a negative modulator of STIM1 puncta formation in myeloid cells. Using site-directed mutagenesis, co-immunoprecipitation assays and FRET imaging, we determined that Tmem178:STIM1 association occurs via their transmembrane motifs. Mutants that increase Tmem178:STIM1 association reduce STIM1 puncta formation, SOCE activation, impair inflammatory cytokine production in macrophages and osteoclastogenesis. Mutants that reduce Tmem178:STIM1 association reverse these effects. Furthermore, exposure to plasma from arthritic patients decreases Tmem178 expression, enhances SOCE activation and cytoplasmic calcium. In conclusion, Tmem178 modulates the rate-limiting step of STIM1 puncta formation and therefore controls SOCE in inflammatory conditions.


Asunto(s)
Calcio/metabolismo , Proteínas Sensoras del Calcio Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Células Mieloides/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Femenino , Regulación de la Expresión Génica , Células HEK293 , Humanos , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Células Mieloides/inmunología , Proteínas de Neoplasias/química , Osteogénesis/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Molécula de Interacción Estromal 1/química
6.
Curr Protoc Cytom ; 85(1): e39, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29927100

RESUMEN

Since its commercialization in the late 1980's, confocal laser scanning microscopy (CLSM) has since become one of the most prevalent fluorescence microscopy techniques for three-dimensional structural studies of biological cells and tissues. The flexibility of the approach has enabled its application in a diverse array of studies, from the fast imaging of dynamic processes in living cells, to meticulous morphological analyses of tissues, and co-localization of protein expression patterns. In this chapter, we introduce the principles of confocal microscopy and discuss how the approach has become a mainstay in the biological sciences. We describe the components of a CLSM system and assess how modern implementations of the approach have further expanded the use of the technique. Finally, we briefly outline some practical considerations to take into account when acquiring data using a CLSM system. © 2018 by John Wiley & Sons, Inc.


Asunto(s)
Microscopía Confocal/instrumentación , Microscopía Confocal/métodos , Historia del Siglo XX , Historia del Siglo XXI , Microscopía Confocal/historia , Microscopía Confocal/tendencias
7.
Methods Cell Biol ; 143: 57-78, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29310792

RESUMEN

Over the last 2 decades, nonlinear imaging methods such as multiharmonic imaging microscopy (MHIM) have become powerful approaches for the label-free visualization of biological structures. Multiharmonic signals are generated when an intense electromagnetic field propagates through a sample that either has a specific molecular orientation or exhibits certain physical properties. It can provide complementary morphological information when integrated with other nonlinear optical imaging techniques such as two-photon excitation (TPE). Here, we present the necessary methodology to implement an integrated approach for multiharmonic and TPE imaging of the mouse aorta using a commercial two-photon microscope. This approach illustrates how to differentiate the microstructure of the mouse aorta that are due to collagen fibrils and elastic laminae under 820 and 1230nm excitation. Our method also demonstrates how to perform multiharmonic generation by reflectance of the forwardly propagating emission signal. The ability to visualize biological samples without additional genetically targeted or chemical stains makes MHIM well suited for studying the morphology of the mouse aorta and has the potential to be applied to other collagen and elastin-rich tissues.


Asunto(s)
Proteínas de la Matriz Extracelular/ultraestructura , Matriz Extracelular/ultraestructura , Imagen Molecular/métodos , Imagen Óptica/métodos , Coloración y Etiquetado/métodos , Animales , Matriz Extracelular/química , Proteínas de la Matriz Extracelular/química , Ratones , Imagen Molecular/instrumentación , Imagen Óptica/instrumentación , Coloración y Etiquetado/instrumentación
8.
Curr Biol ; 26(22): 2992-3003, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-27773571

RESUMEN

It is well recognized that G-protein-coupled receptors (GPCRs) can activate Ras-regulated kinase pathways to produce lasting changes in neuronal function. Mechanisms by which GPCRs transduce these signals and their relevance to brain disorders are not well understood. Here, we identify a major Ras regulator, neurofibromin 1 (NF1), as a direct effector of GPCR signaling via Gßγ subunits in the striatum. We find that binding of Gßγ to NF1 inhibits its ability to inactivate Ras. Deletion of NF1 in striatal neurons prevents the opioid-receptor-induced activation of Ras and eliminates its coupling to Akt-mTOR-signaling pathway. By acting in the striatal medium spiny neurons of the direct pathway, NF1 regulates opioid-induced changes in Ras activity, thereby sensitizing mice to psychomotor and rewarding effects of morphine. These results delineate a novel mechanism of GPCR signaling to Ras pathways and establish a critical role of NF1 in opioid addiction.


Asunto(s)
Analgésicos Opioides/metabolismo , Neurofibromina 1/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Proteínas ras/metabolismo , Animales , Femenino , Masculino , Ratones , Neostriado/metabolismo , Neurofibromina 1/metabolismo , Neuronas/metabolismo , Unión Proteica
9.
Mol Cell Neurosci ; 71: 66-79, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26705735

RESUMEN

Excess synapses formed during early postnatal development are pruned over an extended period, while the remaining synapses mature. Synapse pruning is critical for activity-dependent refinement of neuronal connections and its dysregulation has been found in neurodevelopmental disorders such as autism spectrum disorders; however, the mechanism underlying synapse pruning remains largely unknown. As dendritic spines are the postsynaptic sites for the vast majority of excitatory synapses, spine maturation and pruning are indicators for maturation and elimination of these synapses. Our previous studies have found that dendritically localized mRNA for brain-derived neurotrophic factor (BDNF) regulates spine maturation and pruning. Here we investigated the mechanism by which dendritic Bdnf mRNA, but not somatically restricted Bdnf mRNA, promotes spine maturation and pruning. We found that neuronal activity stimulates both translation of dendritic Bdnf mRNA and secretion of its translation product mainly as proBDNF. The secreted proBDNF promotes spine maturation and pruning, and its effect on spine pruning is in part mediated by the p75(NTR) receptor via RhoA activation. Furthermore, some proBDNF is extracellularly converted to mature BDNF and then promotes maturation of stimulated spines by activating Rac1 through the TrkB receptor. In contrast, translation of somatic Bdnf mRNA and the release of its translation product mainly as mature BDNF are independent of action potentials. These results not only reveal a biochemical pathway regulating synapse pruning, but also suggest that BDNF synthesized in the soma and dendrites is released through distinct secretory pathways.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Espinas Dendríticas/metabolismo , Neurogénesis , Potenciales de Acción , Animales , Células Cultivadas , Espinas Dendríticas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Receptor de Factor de Crecimiento Nervioso/metabolismo , Receptor trkB/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
10.
Elife ; 42015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26613416

RESUMEN

In the striatum, signaling via G protein-coupled neurotransmitter receptors is essential for motor control. Critical to this process is the effector enzyme adenylyl cyclase type 5 (AC5) that produces second messenger cAMP upon receptor-mediated activation by G protein Golf. However, the molecular organization of the Golf-AC5 signaling axis is not well understood. In this study, we report that in the striatum AC5 exists in a stable pre-coupled complex with subunits of Golf heterotrimer. We use genetic mouse models with disruption in individual components of the complex to reveal hierarchical order of interactions required for AC5-Golf stability. We further identify that the assembly of AC5-Golf complex is mediated by PhLP1 chaperone that plays central role in neurotransmitter receptor coupling to cAMP production motor learning. These findings provide evidence for the existence of stable G protein-effector signaling complexes and identify a new component essential for their assembly.


Asunto(s)
Adenilil Ciclasas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Neuronas/enzimología , Neurotransmisores/metabolismo , Multimerización de Proteína , Receptores de Neurotransmisores/metabolismo , Animales , Ratones
11.
Neuropharmacology ; 61(8): 1239-47, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21824485

RESUMEN

Carisbamate (CRS, RWJ-333369) is a novel antiepileptic drug awaiting approval for use in the treatment of partial and generalized seizures. Our aim was to determine whether CRS modulates synaptic transmission in the dentate gyrus (DG) and the underlying mechanism. The whole-cell patch-clamp method was used to record AMPA receptor- and NMDA receptor-mediated excitatory postsynaptic currents (EPSC(AMPA) and EPSC(NMDA)) and GABA(A) receptor-mediated inhibitory postsynaptic currents (IPSCs) in granule cells of the DG in brain slices prepared from 3- to 5-week-old male Wistar rats. CRS (30-300 µM) inhibited the evoked EPSC(AMPA) and EPSC(NMDA) by the same extent (20%) with significantly altered CV(-2), suggesting presynaptic modulation. It did not significantly change the inward currents induced by AMPA application. The inhibitory effect of CRS on the evoked EPSC(AMPA) was not occluded by selective voltage-gated Ca(2+) channel blockers, ruling out the involvement of presynaptic Ca(2+) channels. The frequency, but not the amplitude, of spontaneous EPSC(AMPA) was significantly reduced by CRS. However, CRS did not alter either the frequency or the amplitude of TTX-insensitive miniature EPSC(AMPA), indicating an action potential-dependent mechanism was involved. In addition, CRS (100 or 300 µM) did not significantly change the amplitude of the evoked IPSCs. To summarize, our results suggest that CRS reduces glutamatergic transmission by an action potential-dependent presynaptic mechanism and consequently inhibits excitatory synaptic strength in the DG without affecting GABAergic transmission. This effect may contribute to the antiepileptic action observed clinically at therapeutic concentrations of CRS.


Asunto(s)
Anticonvulsivantes/farmacología , Carbamatos/farmacología , Giro Dentado/citología , Ácido Glutámico/farmacología , Neuronas/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , 2-Amino-5-fosfonovalerato/farmacología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Biofisica , Bloqueadores de los Canales de Calcio/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Antagonistas del GABA/farmacología , Técnicas In Vitro , Masculino , Técnicas de Placa-Clamp , Picrotoxina/farmacología , Ratas , Ratas Wistar , omega-Conotoxina GVIA/farmacología
12.
Biochem Pharmacol ; 76(9): 1155-64, 2008 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-18761327

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disease that mainly affects dopaminergic (DA-ergic) neurons in the substantia nigra pars compacta (SNc). Glutamate modulates neuronal excitability, and a high concentration of glutamatergic receptors is found on DA-ergic neurons in the SNc. Paraquat (PQ) is a putative causative agent for PD. Its effects on synaptic glutamate transmission in SNc DA-ergic neurons were evaluated using whole-cell voltage-clamp recording in brain slices from 7- to 14-day-old Wistar rats. In the presence of bicuculline (BIC), strychnine, and dl-aminophosphonovaleric acid, PQ reversibly suppressed AMPA receptor-mediated evoked excitatory postsynaptic currents (eEPSCs) in a concentration-dependent manner (P<0.05). In the presence of tetrodotoxin (1 microM), PQ (50 microM) significantly reduced the amplitudes, but not the frequencies, of miniature EPSCs in the SNc, suggesting PQ inhibited eEPSCs through a postsynaptic mechanism. Exogenous application of AMPA to induce AMPA-mediated inward currents excluded involvement of a presynaptic response. The AMPA-induced currents in the SNc were significantly reduced by PQ (50 microM) to 74% of control levels (P<0.05), supporting that PQ acts on postsynaptic AMPA receptors. No effect of PQ on eEPSCs was seen in the LD thalamic nucleus and hippocampus, showing PQ specifically inhibited DA-ergic neurons in the SNc. Our results demonstrate a novel mechanism of action of PQ on glutamate-gated postsynaptic AMPA receptors in SNc DA-ergic neurons. This effect may attenuate the excitability and function of DA-ergic neurons in the SNc, which may contribute to the pathogenesis of PD.


Asunto(s)
Dopamina , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Neuronas/efectos de los fármacos , Paraquat/farmacología , Receptores AMPA/antagonistas & inhibidores , Sustancia Negra/efectos de los fármacos , Animales , Animales Recién Nacidos , Dopamina/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Neuronas/metabolismo , Neuronas/fisiología , Ratas , Ratas Wistar , Receptores AMPA/fisiología , Sustancia Negra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...