Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
Aging Dis ; 2024 May 01.
Article En | MEDLINE | ID: mdl-38739930

Vascular calcification (VC) is the ectopic deposition of calcium-containing apatite within vascular walls, exhibiting a high prevalence in older adults, and those with diabetes or chronic kidney disease. VC is a subclinical cardiovascular risk trait that increases mortality and functional deterioration. However, effective treatments for VC remain largely unavailable despite multiple attempts. Part of this therapeutic nihilism results from the failure to appreciate the diversity of VC as a pathological complex, with unforeseeable variations in morphology, risk associates, and anatomical and molecular pathogenesis, affecting clinical management strategies. VC should not be considered a homogeneous pathology because accumulating evidence refutes its conceptual and content uniformity. Here, we summarize the pathophysiological sources of VC heterogeneity from the intersecting pathways and networks of cellular, subcellular, and molecular crosstalk. Part of these pathological connections are synergistic or mutually antagonistic. We then introduce clinical implications related to the VC heterogeneity concept. Even within the same individual, a specific artery may exhibit the strongest tendency for calcification compared with other arteries. The prognostic value of VC may only be detectable with a detailed characterization of calcification morphology and features. VC heterogeneity is also evident, as VC risk factors vary between different arterial segments and layers. Therefore, diagnostic and screening strategies for VC may be improved based on VC heterogeneity, including the use of radiomics. Finally, pursuing a homogeneous treatment strategy is discouraged and we suggest a more rational approach by diversifying the treatment spectrum. This may greatly benefit subsequent efforts to identify effective VC therapeutics.

2.
Curr Issues Mol Biol ; 46(2): 1516-1529, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38392216

Carcinogens, such as arecoline, play a crucial role in cancer progression and continuous gene mutations by generating reactive oxygen species (ROS). Antioxidants can reduce ROS levels and potentially prevent cancer progression but may paradoxically enhance the survival of cancer cells. This study investigated whether epigallocatechin-3-gallate (EGCG), an antioxidant from green tea, could resolve this paradox. Prostate cancer cells (PC-3 cell line) were cultured and treated with arecoline combined with NAC (N-acetylcysteine) or EGCG; the combined effects on intracellular ROS levels and cell viability were examined using the MTT and DCFDA assays, respectively. In addition, apoptosis, cell cycle, and protein expression were investigated using flow cytometry and western blot analysis. Our results showed that EGCG, similar to NAC (N-acetylcysteine), reduced the intracellular ROS levels, which were elevated by arecoline. Moreover, EGCG not only caused cell cycle arrest but also facilitated cell apoptosis in arecoline-treated cells in a synergistic manner. These were evidenced by elevated levels of cyclin B1 and p27, and increased fragmentation of procaspase-3, PARP, and DNA. Our findings highlight the potential use of EGCG for cancer prevention and therapy.

3.
Proteomes ; 11(4)2023 Oct 12.
Article En | MEDLINE | ID: mdl-37873873

Trophoblast migration and invasion play crucial roles in placental development. However, the effects of (-)-epigallocatechin-3-gallate (EGCG) on trophoblast cell functions remain largely unexplored. In this study, we investigated the impact of EGCG on the survival of trophoblast cells and employed a proteomics analysis to evaluate its influence on trophoblast cell migration and invasion. Be-Wo trophoblast cells were treated with EGCG, and a zone closure assay was conducted to assess the cell migration and invasion. Subsequently, a proteomics analysis was performed on the treated and control groups, followed by a bioinformatics analysis to evaluate the affected biological pathways and protein networks. A quantitative real-time PCR and Western blot analysis were carried out to validate the proteomics findings. Our results showed that EGCG significantly suppressed the trophoblast migration and invasion at a concentration not affecting cell survival. The proteomics analysis revealed notable differences in the protein expression between the EGCG-treated and control groups. Specifically, EGCG downregulated the signaling pathways related to EIF2, mTOR, and estrogen response, as well as the processes associated with the cytoskeleton, extracellular matrix, and protein translation. Conversely, EGCG upregulated the pathways linked to lipid degradation and oxidative metabolism. The quantitative PCR showed that EGCG modulated protein expression by regulating gene transcription, and the Western blot analysis confirmed its impact on cytoskeleton and extracellular matrix reorganization. These findings suggest EGCG may inhibit trophoblast migration and invasion through multiple signaling pathways, highlighting the potential risks associated with consuming EGCG-containing products during pregnancy. Future research should investigate the impact of EGCG intake on maternal and fetal proteoforms.

4.
Exp Biol Med (Maywood) ; 248(20): 1695-1707, 2023 10.
Article En | MEDLINE | ID: mdl-37646261

Resistin and suppressors of cytokine signaling (SOCSs) have been reported to regulate prostate cancer (PCa) cell proliferation and survival, respectively. Whether any of the SOCS molecules mediate the mitogenic effect of resistin on PCa cells is unknown. Using PC-3 human PCa cells, we found that resistin upregulates the expression of SOCS3 and SOCS5 mRNA, but not SOCS7 mRNA, in a dose- and time-dependent manner. The resistin-induced increases in SOCS3 and SOCS5 expression and cell proliferation were prevented by pretreatment with specific inhibitors of the TLR4, ERK, p38 MAPK, JNK, PI3K, and JAK2 proteins. However, pretreatment with a TLR2 inhibitor had no effect on resistin-mediated SOCS3 and SOCS5 expression. In addition, the effects of resistin on SOCS3, SOCS5, and SOCS7 mRNA levels were cell type-specific. Overexpression of either SOCS3 or SOCS5 enhanced further resistin-stimulated growth of PC-3 cells, whereas silencing SOCS3 or SOCS5 antagonized resistin-increased cell growth. Further PCa tissue analysis demonstrated higher levels of RETN, TLR4, SOCS3, and SOCS5 mRNAs in cancer tissues than benign prostate hyperplasia and indicated positive correlations among RETN, TLR4, and SOCS5. These data suggest that SOCS5, TLR4, and, to a lesser extent, SOCS3 can mediate the mitogenic effect of resistin on PC-3 PCa cells.


Prostate , Prostatic Neoplasms , Humans , Male , PC-3 Cells , Prostate/metabolism , Prostatic Neoplasms/metabolism , Resistin/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism , Toll-Like Receptor 4/metabolism
5.
Phytomedicine ; 116: 154860, 2023 Jul 25.
Article En | MEDLINE | ID: mdl-37201366

BACKGROUND: Epidermal growth factor receptor (EGFR) is upregulated in prostate cancer (PCa). However, suppression of EGFR did not improve the patient outcome, possibly due to the activation of PI3K/Akt signaling in PCa. Compounds able to suppress both PI3K/Akt and EGFR signaling may be effective for treating advanced PCa. PURPOSE: We examined if caffeic acid phenethyl ester (CAPE) simultaneously suppresses the EGFR and Akt signaling, migration and tumor growth in PCa cells. METHODS: Wound healing assay, transwell migration assay and xenograft mice model were used to determine the effects of CAPE on migration and proliferation of PCa cells. Western blot, immunoprecipitation, and immunohistochemistry staining were performed to determine the effects of CAPE on EGFR and Akt signaling. RESULTS: CAPE treatment decreased the gene expression of HRAS, RAF1, AKT2, GSK3A, and EGF and the protein expression of phospho-EGFR (Y845, Y1069, Y1148, Y1173), phospho-FAK, Akt, and ERK1/2 in PCa cells. CAPE treatment inhibited the EGF-induced migration of PCa cells. Combined treatment of CAPE with EGFR inhibitor gefitinib showed additive inhibition on migration and proliferation of PCa cells. Injection of CAPE (15 mg/kg/3 days) for 14 days suppressed the tumor growth of prostate xenografts in nude mice as well as suppressed the levels of Ki67, phospho-EGFR Y845, MMP-9, phospho-Akt S473, phospho-Akt T308, Ras, and Raf-1 in prostate xenografts. CONCLUSIONS: Our study suggested that CAPE can simultaneously suppress the EGFR and Akt signaling in PCa cells and is a potential therapeutic agent for advanced PCa.


Phenylethyl Alcohol , Prostatic Neoplasms , Male , Humans , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Prostate/pathology , Phosphatidylinositol 3-Kinases/metabolism , Mice, Nude , Epidermal Growth Factor , Prostatic Neoplasms/pathology , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use , ErbB Receptors , Phenylethyl Alcohol/pharmacology , Cell Line, Tumor , Cell Proliferation
6.
Virulence ; 14(1): 2190650, 2023 12.
Article En | MEDLINE | ID: mdl-36914565

The global coronavirus disease 2019 (COVID-19) pandemic has a detrimental impact on public health. COVID-19 usually manifests as pneumonia, which can progress into acute respiratory distress syndrome (ARDS) related to uncontrolled TH17 immune reaction. Currently, there is no effective therapeutic agent to manage COVID-19 with complications. The currently available anti-viral drug remdesivir has an effectiveness of 30% in SARS-CoV-2-induced severe complications. Thus, there is a need to identify effective agents to treat COVID-19 and the associated acute lung injury and other complications. The host immunological pathway against this virus typically involves the THαß immune response. THαß immunity is triggered by type 1 interferon and interleukin-27 (IL-27), and the main effector cells of the THαß immune response are IL10-CD4 T cells, CD8 T cells, NK cells, and IgG1-producing B cells. In particular, IL-10 exerts a potent immunomodulatory or anti-inflammatory effect and is an anti-fibrotic agent for pulmonary fibrosis. Concurrently, IL-10 can ameliorate acute lung injury or ARDS, especially those caused by viruses. Owing to its anti-viral activity and anti-pro-inflammatory effects, in this review, IL-10 is suggested as a possible treatment agent for COVID-19.


Acute Lung Injury , COVID-19 , Respiratory Distress Syndrome , Humans , SARS-CoV-2 , Interleukin-10 , Respiratory Distress Syndrome/drug therapy , Acute Lung Injury/drug therapy
7.
Biomedicines ; 10(10)2022 Oct 06.
Article En | MEDLINE | ID: mdl-36289759

Host immunological pathways are delicate to cope with different types of pathogens. In this article, we divide immunological pathways into two groups: Immunoglobulin G-related eradicable immunities and Immunoglobulin A-related tolerable immunities. Once immune cells encounter an antigen, they can become anergic or trigger immune reactions. Immunoglobulin D B cells and γδ T cells are recognizing self-antigens to become anergic. Immunoglobulin M B cells and αß T cells can trigger host immune reactions. Eradicable immune responses can be divided into four groups: TH1/TH2/TH22/THαß (TH-T Helper cell groups). Tolerable immune responses can be divided into four groups: TH1-like/TH9/TH17/TH3. Four groups mean hosts can cope with four types of pathogens. Cancer is related to immune dysfunction. TH1-like immunity is pro-tumor immunity and THαß is anti-tumor immunity. TH1-like immunity is the host tolerable immunity against intracellular micro-organisms. THαß immunity is the host eradicable immunity against viruses. Cancer is also related to clonal anergy by Immunoglobulin D B cells and γδ T cells. Oncolytic viruses are related to the activation of anti-viral THαß immunity. M2 macrophages are related to the tolerable TH1-like immunity, and they are related to metastasis. This review is key to understanding the immune pathogenesis of cancer. We can then develop better therapeutic agents to treat cancer.

8.
PLoS One ; 17(7): e0270803, 2022.
Article En | MEDLINE | ID: mdl-35776912

Enzalutamide, a nonsteroidal antiandrogen, significantly prolonged the survival of patients with metastatic castration-resistant prostate cancer (CRPC). However, patients receiving enzalutamide frequently develop drug resistance. Rooibos (Aspalathus linearis) is a shrub-like leguminous fynbos plant endemic to the Cedarberg Mountains area in South Africa. We evaluated the possibility of using a pharmaceutical-grade green rooibos extract (GRT, containing 12.78% aspalathin) to suppress the proliferation and survival of enzalutamide-resistant prostate cancer (PCa) cells. Treatment with GRT dose-dependently suppressed the proliferation, survival, and colony formation of enzalutamide-resistant C4-2 MDV3100r cells and PC-3 cells. Non-cancerous human cells were more resistant to GRT treatment. GRT suppressed the expression of proteins involved in phosphoinositide 3-kinase (PI3K)-Akt signaling, androgen receptor (AR), phospho-AR (Ser81), cyclin-dependent kinase 1 (Cdk1), c-Myc and Bcl-2 but increased the expression of apoptotic proteins. Overexpression of c-Myc antagonized the suppressive effects of GRT, while knockdown of c-Myc increased the sensitivity of PCa cells to GRT treatment. Expression level of c-Myc correlated to resistance of PCa cells to GRT treatment. Additionally, immunofluorescence microscopy demonstrated that GRT reduced the abundance of AR proteins both in nucleus and cytoplasm. Treatment with cycloheximide revealed that GRT reduced the stability of AR. GRT suppressed protein expression of AR and AR's downstream target prostate specific antigen (PSA) in C4-2 MDV3100r cells. Interestingly, we observed that AR proteins accumulate in nucleus and PSA expression is activated in the AR-positive enzalutamide-resistant PCa cells even in the absence of androgen. Our results suggested that GRT treatment suppressed the cell proliferation and survival of enzalutamide-resistant PCa cells via inhibition of c-Myc, induction of apoptosis, as well as the suppression of expression, signaling and stability of AR. GRT is a potential adjuvant therapeutic agent for enzalutamide-resistant PCa.


Aspalathus , Prostatic Neoplasms, Castration-Resistant , Aspalathus/metabolism , Benzamides , Cell Line, Tumor , Cell Proliferation , Cell Survival , Humans , Male , Nitriles , Phenylthiohydantoin , Phosphatidylinositol 3-Kinases , Prostate-Specific Antigen/therapeutic use , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
9.
Front Endocrinol (Lausanne) ; 12: 661828, 2021.
Article En | MEDLINE | ID: mdl-34093437

Endothelins induce many biological responses, and they are composed of three peptides: ET-1, ET-2, and ET-3. Reports have indicated that ET-1 regulates cell proliferation, adipogenesis, and other cell responses and that ET-3 stimulates the growth of gastrointestinal epithelial cells and melanocytes. However, the signalling pathways of ET3 that mediate the growth of fat cells are still unclear. Using 3T3-L1 white preadipocytes, we found that ET-3 induced increases in both cell number and BrdU incorporation. Pretreatment with an ETAR antagonist (but not an ETBR antagonist) blocked the ET-3-induced increases in both cell number and BrdU incorporation. Additionally, BQ610 suppressed the ET-3-induced increases in phosphorylation of AMPK, c-JUN, and STAT3 proteins, and pretreatment with specific inhibitors of AMPK, JNK/c-JUN, or JAK/STAT3 prevented the ET-3-induced increases in phosphorylation of AMPK, c-JUN, and STAT3, respectively. Neither p38 MAPK inhibitor nor PKC inhibitor altered the effects of ET-3 on cell growth. These data suggest that ET-3 stimulates preadipocyte growth through the ETAR, AMPK, JNK/c-JUN, and STAT3 pathways. Moreover, ET-3 did not alter HIB1B brown preadipocyte and D12 beige preadipocyte growth, suggesting a preadipocyte type-dependent effect. The results of this study may help explain how endothelin mediates fat cell activity and fat cell-associated diseases.


Adipocytes/cytology , Endothelin-3/metabolism , 3T3-L1 Cells , Adipocytes/metabolism , Animals , Cell Proliferation , Endothelin-3/antagonists & inhibitors , Mice , Mitogen-Activated Protein Kinases/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Receptor, Endothelin A/metabolism , Receptor, Endothelin B/metabolism , Sphingomyelin Phosphodiesterase/metabolism
10.
Sci Rep ; 11(1): 1763, 2021 01 19.
Article En | MEDLINE | ID: mdl-33469074

Patients with complicated parapneumonic effusion (CPPE)/empyema have high morbidity and mortality, particularly when adequate management is delayed. We aimed to investigate novel dysregulated cytokines that can be used as biomarkers for infectious pleural effusions, especially for CPPE/empyema. Expression of 40 cytokines in parapneumonic effusions (PPE) was screened in the discovery phase, involving 63 patients, using a multiplex immunobead-based assay. Six cytokines were subsequently validated by enzyme-linked immunosorbent assays (ELISAs). We then used ELISA to further evaluate the diagnostic values and cutoff values of these cytokines as potential biomarkers in an expanded group that included 200 patients with uncomplicated parapneumonic effusion (UPPE), CPPE, empyema, transudates, other exudates, and malignant pleural effusion (MPE). The pleural levels of four cytokines (MIF, MIP-3α, IL-1ß, ENA-78) were highest and significantly increased in CPPE/empyema compared with those in other etiologies. According to receiver operating characteristic curve analysis, the four cytokines (MIF, MIP-3α, IL-1ß, and ENA-78) had areas under the curve (AUCs) greater than 0.710 for discriminating parapneumonic pleural effusion from noninfectious pleural effusions. In a comparison of nonpurulent CPPE with UPPE, logistic regression analysis revealed that pleural fluid MIF ≥ 12 ng/ml and MIP-3α ≥ 4.3 ng/ml had the best diagnostic value; MIF also displayed the highest odds ratio of 663 for nonpurulent CPPE, with 97.5% specificity, 94.44% sensitivity, and an AUC of 0.950. In conclusion, our results show that elevated MIF and MIP-3α may be used as novel biomarkers for PPE diagnosis, particularly in patients with CPPE/empyema; the findings indicate that dysregulated cytokine expression may provide clues about the pathogenesis of pleural infection.


Chemokine CCL20/analysis , Chemokine CXCL5/analysis , Empyema, Pleural/diagnosis , Interleukin-1beta/analysis , Intramolecular Oxidoreductases/analysis , Macrophage Migration-Inhibitory Factors/analysis , Pleural Effusion/diagnosis , Aged , Biomarkers/analysis , Chemokine CCL20/metabolism , Chemokine CXCL5/metabolism , Empyema, Pleural/pathology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Interleukin-1beta/metabolism , Intramolecular Oxidoreductases/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Male , Middle Aged , Pleural Effusion/pathology , Prospective Studies
11.
Int J Mol Sci ; 21(23)2020 Dec 03.
Article En | MEDLINE | ID: mdl-33287214

Prostate cancer (PCa) is a reproductive system cancer in elderly men. We investigated the effects of betel nut arecoline on the growth of normal and cancerous prostate cells. Normal RWPE-1 prostate epithelial cells, androgen-independent PC-3 PCa cells, and androgen-dependent LNCaP PCa cells were used. Arecoline inhibited their growth in dose- and time-dependent manners. Arecoline caused RWPE-1 and PC-3 cell cycle arrest in the G2/M phase and LNCaP cell arrest in the G0/G1 phase. In RWPE-1 cells, arecoline increased the expression of cyclin-dependent kinase (CDK)-1, p21, and cyclins B1 and D3, decreased the expression of CDK2, and had no effects on CDK4 and cyclin D1 expression. In PC-3 cells, arecoline decreased CDK1, CDK2, CDK4, p21, p27, and cyclin D1 and D3 protein expression and increased cyclin B1 protein expression. In LNCaP cells, arecoline decreased CDK2, CDK4, and cyclin D1 expression; increased p21, p27, and cyclin D3 expression; had no effects on CDK1 and cyclin B1 expression. The antioxidant N-acetylcysteine blocked the arecoline-induced increase in reactive oxygen species production, decreased cell viability, altered the cell cycle, and changed the cell cycle regulatory protein levels. Thus, arecoline oxidant exerts differential effects on the cell cycle through modulations of regulatory proteins.


Areca/chemistry , Arecoline/pharmacology , Cell Cycle Checkpoints/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Arecoline/chemistry , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Survival/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Dose-Response Relationship, Drug , Gene Expression Regulation, Neoplastic , Humans , Male , Prostatic Neoplasms
12.
Am J Physiol Cell Physiol ; 319(5): C839-C857, 2020 11 01.
Article En | MEDLINE | ID: mdl-32755450

Endothelin (ET)-1 regulates adipogenesis and the endocrine activity of fat cells. However, relatively little is known about the ET-1 signaling pathway in preadipocyte growth. We used 3T3-L1 preadipocytes to investigate the signaling pathways involved in ET-1 modulation of preadipocyte proliferation. As indicated by an increased number of cells and greater incorporation of bromodeoxyuridine (BrdU), the stimulation of preadipocyte growth by ET-1 depends on concentration and timing. The concentration of ET-1 that increased preadipocyte number by 51-67% was ~100 nM for ~24-48 h of treatment. ET-1 signaling time dependently stimulated phosphorylation of ERK, c-JUN, STAT3, AMPK, and PKCα/ßII proteins but not AKT, JNK, or p38 MAPK. Treatment with an ETAR antagonist, such as BQ610, but not ETBR antagonist BQ788, blocked the ET-1-induced increase in cell proliferation and phosphorylated levels of ERK, c-JUN, STAT3, AMPK, and PKCα/ßII proteins. In addition, pretreatment with specific inhibitors of ERK1/2 (U0126), JNK (SP600125), JAK2/STAT3 (AG490), AMPK (compound C), or PKC (Ro318220) prevented the ET-1-induced increase in cell proliferation and reduced the ET-1-stimulated phosphorylation of ERK1/2, c-JUN, STAT3, AMPK, and PKCα/ß. Moreover, the SphK antagonist suppressed ET-1-induced cell proliferation and ERK, c-JUN, STAT3, AMPK, and PKC phosphorylation, and the SMase2 antagonist suppressed ET-1-induced cell proliferation. However, neither the p38 MAPK antagonist nor the CerS inhibitor altered the effect of ET-1. The results indicate that ETAR, JAK2/STAT3, ERK1/2, JNK/c-JUN, AMPK, PKC, SphK, and SMase2, but not ETBR, p38 MAPK, or CerS, are necessary for the ET-1 stimulation of preadipocyte proliferation.


Adipocytes/drug effects , Endothelin-1/pharmacology , JNK Mitogen-Activated Protein Kinases/genetics , Protein Kinase C/genetics , STAT3 Transcription Factor/genetics , p38 Mitogen-Activated Protein Kinases/genetics , 3T3-L1 Cells , Adipocytes/cytology , Adipocytes/metabolism , Animals , Butadienes/pharmacology , Cell Differentiation , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Endothelin Receptor Antagonists/pharmacology , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation , Imidazoles/pharmacology , JNK Mitogen-Activated Protein Kinases/metabolism , Mice , Nitriles/pharmacology , Oligopeptides/pharmacology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Piperidines/pharmacology , Protein Kinase C/metabolism , Pyridines/pharmacology , Receptors, Endothelin/genetics , Receptors, Endothelin/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism
13.
BMC Pulm Med ; 19(1): 108, 2019 Jun 18.
Article En | MEDLINE | ID: mdl-31215423

BACKGROUND: We previously demonstrated that the pleural levels of proteins (neutrophil gelatinase-associated lipocalin/NGAL, calprotectin, bactericidal permeability-increasing/BPI, azurocidin 1/AZU-1) were valuable markers for identifying complicated PPE (CPPE). Herein, this study was performed to evaluate whether these proteins are useful as serological markers for identifying CPPE and empyema. METHODS: A total of 137 participates were enrolled in this study. The levels of NGAL, calprotectin, BPI and AZU-1 were measured in serum and pleural fluid by enzyme-linked immunosorbent assay. We also characterized the diagnostic values of these markers between different groups. RESULTS: The serum levels of NGAL, calprotectin, and BPI in PPE patients were significantly higher than those in transudates, noninfectious exudates, and healthy controls. The area under the curve (AUC) values of NGAL, calprotectin, and BPI for distinguishing PPE from transudates or noninfectious exudates were around 0.861 to 0.953. In PPE group, serum NGAL and calprotectin levels were significantly elevated in patients with CPPE and empyema than in those with UPPE, whereas the serum BPI levels were similar between these two groups. In CPPE and empyema patients, the serum NGAL showed a positive correlation with the pleural fluid NGAL (r = 0.417, p <  0.01). When combined with serum CRP, the sensitivity and specificity of serum calprotectin for identifying CPPE and empyema were the highest at 73.52% and 80.55%, respectively. CONCLUSIONS: We concluded that serum calprotectin and NGAL were adjuvant serological markers for CPPE and empyema diagnosis. Patients present with pneumonia and pleural effusion signs in the chest x-ray and the combination of serum calprotectin and CRP constitutes a more highly sensitive and specific assay for identifying CPPE and empyema.


Empyema, Pleural/diagnosis , Leukocyte L1 Antigen Complex/blood , Lipocalin-2/blood , Pleural Effusion/diagnosis , Pneumonia/diagnosis , Aged , Aged, 80 and over , Area Under Curve , Biomarkers/blood , Case-Control Studies , Empyema, Pleural/complications , Female , Humans , Male , Middle Aged , Pleural Effusion/etiology , Pneumonia/complications , ROC Curve , Sensitivity and Specificity , Taiwan
14.
Sci Rep ; 9(1): 4228, 2019 03 12.
Article En | MEDLINE | ID: mdl-30862805

Colorectal cancer (CRC) is the third leading cause of cancer-related death worldwide. We examined if tumor tissue and circulating protein levels of all vascular endothelial growth factors (VEGFs) and VEGF receptors (VEGFRs) were synchronous and different in Taiwan patients with metastatic CRC (mCRC) vs. non-mCRC. We analyzed samples from 109 patients enrolled from 2005-2017, 50 with stages I/II and 59 with stages III/IV CRC. We found that VEGF-A, -B, -C, -D, placental growth factor (PlGF), VEGFR-1, VEGFR-2, and VEGFR-3 were higher in tumor tissues than non-tumor tissues. Metastatic patients had higher levels of circulating VEGFs and soluble VEGFRs (sVEGFRs) than healthy subjects, as well as higher VEGF-A, -B, -C, -D, and PlGF proteins in both tumor tissue and serum than non-metastatic patients. Protein levels of VEGF and VEGFR were mainly associated with the patient's age, tumor site, tumor size, tumor stage, and lymph node metastasis. Patients exhibiting high levels of VEGF, VEGFR, and sVEGFR had a shorter overall survival and disease-free survival than those with low levels. We conclude that synchronous changes in VEGF and VEGFR levels in CRC tissue and serum VEGF can discriminate between metastatic and non-metastatic subjects and high levels are associated with poor survival in CRC.


Colorectal Neoplasms/blood , Colorectal Neoplasms/mortality , Neoplasm Proteins/blood , Vascular Endothelial Growth Factors/blood , Aged , Colorectal Neoplasms/pathology , Female , Humans , Lymphatic Metastasis , Male , Middle Aged
15.
PLoS One ; 13(7): e0200508, 2018.
Article En | MEDLINE | ID: mdl-30011295

The present study was designed to investigate the pathways involved in the effect of betel nut arecoline on cell viability in 3T3-L1 preadipocytes. Arecoline, but not arecaidine or guvacine, inhibited preadipocyte viability in a concentration- and time-dependent manner. Arecoline arrested preadipocyte growth in the G2/M phase of the cell cycle; decreased the total levels of cyclin-dependent kinase 1 (CDK1), p21, and p27 proteins; increased p53 and cyclin B1 protein levels; and had no effect on CDK2 protein levels. These results suggested that arecoline selectively affected a particular CDK subfamily. Arecoline inhibited AMP-activated protein kinase (AMPK) activity; conversely, the AMPK activator, AICAR, blocked the arecoline-induced inhibition of cell viability. Pre-treatment with the antioxidant, N-acetylcysteine, prevented the actions of arecoline on cell viability, G2/M growth arrest, reactive oxygen species (ROS) production, and the levels of CDK1, p21, p27, p53, cyclin B1, and phospho-AMPK proteins. These AMPK- and ROS-dependent effects of arecoline on preadipocyte growth may be related to the mechanism underlying the modulatory effect of arecoline on body weight.


AMP-Activated Protein Kinases/metabolism , Adipocytes/metabolism , Arecoline/pharmacology , G2 Phase Cell Cycle Checkpoints/drug effects , Reactive Oxygen Species/metabolism , 3T3-L1 Cells , Adipocytes/cytology , Animals , Cell Cycle Proteins/biosynthesis , Gene Expression Regulation/drug effects , Mice
16.
Sci Rep ; 7(1): 4026, 2017 06 22.
Article En | MEDLINE | ID: mdl-28642494

Patients with pneumonia and parapneumonic effusion (PPE) have elevated mortality and a poor prognosis. The aim of this study was to discover novel biomarkers to help distinguish between uncomplicated PPE (UPPE) and complicated PPE (CPPE). Using an iTRAQ-based quantitative proteomics, we identified 766 proteins in pleural effusions from PPE patients. In total, 45 of these proteins were quantified as upregulated proteins in CPPE. Four novel upregulated candidates (BPI, NGAL, AZU1, and calprotectin) were selected and further verified using enzyme-linked immunosorbent assays (ELISAs) on 220 patients with pleural effusions due to different causes. The pleural fluid levels of BPI, NGAL, AZU1, and calprotectin were significantly elevated in patients with CPPE. Among these four biomarkers, BPI had the best diagnostic value for CPPE, with an AUC value of 0.966, a sensitivity of 97%, and a specificity of 91.4%. A logistic regression analysis demonstrated a strong association between BPI levels > 10 ng/ml and CPPE (odds ratio = 341.3). Furthermore, the combination of pleural fluid BPI levels with LDH levels improved the sensitivity and specificity to 100% and 91.4%, respectively. Thus, our findings provided a comprehensive effusion proteome data set for PPE biomarker discovery and revealed novel biomarkers for the diagnosis of CPPE.


Biomarkers , Pleural Effusion/etiology , Pleural Effusion/metabolism , Pneumonia/complications , Pneumonia/metabolism , Proteome , Proteomics , Aged , Computational Biology , Female , Humans , Male , Middle Aged , Proteomics/methods , Reproducibility of Results , Sensitivity and Specificity , Spectrometry, Mass, Electrospray Ionization
17.
PLoS One ; 12(2): e0172557, 2017.
Article En | MEDLINE | ID: mdl-28207859

In order to functionally characterize the metabolic roles of crustacean hyperglycemic hormone (CHH), gene expression of CHH in the crayfish (Procambarus clarkii) was knocked down by in vivo injection of CHH double-stranded RNA (dsRNA), followed by metabolomic analysis of 2 CHH target tissues (the muscle and hepatopancreas) using nuclear magnetic resonance spectroscopy. Compared to the levels in untreated and saline-injected (SAI) animals, levels of CHH transcript, but not those of molt-inhibiting hormone (a CHH-family peptide), in the eyestalk ganglia of CHH dsRNA-injected (DSI) animals were significantly decreased at 24, 48, and 72 hour post injection (hpi), with concomitant changes in levels of CHH peptide in the sinus gland (a neurohemal organ) and hemolymph. Green fluorescence protein (GFP) dsRNA failed to affect levels of CHH transcript in the eyestalk ganglia of GFP DSI animals. Number of metabolites whose levels were significantly changed by CHH dsRNA was 149 and 181 in the muscle and 24 and 12 in the hepatopancreas, at 24 and 48 hpi, respectively. Principal component analysis of these metabolites show that metabolic effects of silencing CHH gene expression were more pronounced in the muscle (with the cluster of CHH DSI group clearly being separated from that of SAI group at 24 hpi) than in the hepatopancreas. Moreover, pathway analysis of the metabolites closely related to carbohydrate and energy metabolism indicate that, for CHH DSI animals at 24 hpi, metabolic profile of the muscle was characterized by reduced synthesis of NAD+ and adenine ribonucleotides, diminished levels of ATP, lower rate of utilization of carbohydrates through glycolysis, and a partially rescued TCA cycle, whereas that of the hepatopancreas by unaffected levels of ATP, lower rate of utilization of carbohydrates, and increased levels of ketone bodies. The combined results of metabolic changes in response to silenced CHH gene expression reveal that metabolic functions of CHH on the muscle and hepatopancreas are more diverse than previously thought and are differential between the two tissues.


Arthropod Proteins/antagonists & inhibitors , Astacoidea/metabolism , Gene Silencing , Hepatopancreas/metabolism , Invertebrate Hormones/antagonists & inhibitors , Metabolome , Muscles/metabolism , Nerve Tissue Proteins/antagonists & inhibitors , Animals , Arthropod Proteins/genetics , Astacoidea/genetics , Energy Metabolism , Gene Expression Regulation , Hemolymph/metabolism , Invertebrate Hormones/genetics , Nerve Tissue Proteins/genetics , RNA, Double-Stranded/genetics
18.
Placenta ; 41: 1-9, 2016 05.
Article En | MEDLINE | ID: mdl-27208402

This study investigated the pathways involved in the effect of green tea epigallocatechin gallate (EGCG) on mitogenesis in BeWo, JEG-3, and JAR placental choriocarcinoma cells. EGCG inhibited cell proliferation in dose-dependent and time-dependent manners, as indicated by the number of cells and incorporation of bromodeoxyuridine (BrdU). A catechin-specific effect of green tea was evident; EGCG was more effective than epicatechin, epicatechin gallate, and epigallocatechin in suppressing cell growth. When all three of the mitogen-activated protein kinase (MAPK) subfamilies, i.e., ERK, p38, and JNK, were examined, EGCG significantly increased levels of phospho-ERK1/2 (pERK1/2) and phospho-p38 (pp38) and did not alter the total protein levels of ERK1/2, p38 MAPK, JNK, and phospho-JNK. EGCG-induced increases in the levels of pERK1/2 and pp38 proteins were prevented by pre-treatment with specific inhibitors of ERK1/2 MAPK and p38 MAPK, respectively. These inhibitors also suppressed EGCG-induced decreases in both cell number and BrdU incorporation. Moreover, pre-treatment with an AMP-activated protein kinase (AMPK) inhibitor prevented the actions of EGCG on proliferation and AMPK phosphorylation. These data suggest that EGCG mediates choriocarcinoma cell growth via the AMPK, ERK, and p38 pathways, but not JNK pathway.


Catechin/analogs & derivatives , Cell Proliferation/drug effects , Choriocarcinoma/pathology , Tea , Uterine Neoplasms/pathology , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , Antimitotic Agents , Catechin/pharmacology , Cell Line, Tumor , Cell Proliferation/physiology , Extracellular Signal-Regulated MAP Kinases/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Humans , JNK Mitogen-Activated Protein Kinases/drug effects , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Phosphorylation , Pregnancy , p38 Mitogen-Activated Protein Kinases/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
19.
Am J Physiol Cell Physiol ; 311(2): C308-21, 2016 08 01.
Article En | MEDLINE | ID: mdl-27147558

Green tea catechins, especially (-)-epigallocatechin gallate (EGCG), have been reported to circulate in the placenta of animals and blood of humans after consumption. Whether EGCG regulates activity of human villous trophoblasts (HVT) is unknown. This study investigated the pathways involved in EGCG modulation of trophoblast mitogenesis. EGCG inhibited trophoblast proliferation in a dose-dependent and time-dependent manner, as indicated by the number of cells and incorporation of bromodeoxyuridine (BrdU). EGCG was more effective than other green tea catechins in inhibiting cell growth. EGCG also increased the phosphorylation of the MAPK pathway proteins, ERK1/2, and p38, but not JNK. Furthermore, EGCG had no effects on the total amounts of ERK1/2, p38 MAPK, and JNK proteins. This suggests that EGCG selectively affects particular MAPK subfamilies. Pretreatment with specific inhibitors of ERK1/2, p38 MAPK, and AMP-activated protein kinase (AMPK) antagonized EGCG-induced decreases in both cell number and BrdU incorporation. These inhibitors also blocked EGCG-induced increases in the levels of phospho-ERK1/2, phospho-p38, and phospho-AMPK proteins, respectively. Moreover, EGCG was similar to the phosphatidylinositol 3-kinase inhibitors wortmannin and LY-294002 to decrease protein kinase B (AKT) phosphorylation, cell number, and BrdU incorporation. These data imply that EGCG inhibits the growth of HVT through the ERK, p38, AMPK, and AKT pathways.


AMP-Activated Protein Kinases/metabolism , Catechin/analogs & derivatives , Cell Proliferation/drug effects , MAP Kinase Signaling System/drug effects , Tea/chemistry , Trophoblasts/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Androstadienes/pharmacology , Bromodeoxyuridine/metabolism , Catechin/pharmacology , Cells, Cultured , Chromones/pharmacology , Humans , Morpholines/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Trophoblasts/metabolism , Wortmannin
20.
Gen Comp Endocrinol ; 199: 46-55, 2014 Apr 01.
Article En | MEDLINE | ID: mdl-24486085

This study investigated the pathways involved in EGCG modulation of insulin-like growth factor (IGF)-stimulated glucose uptake in 3T3-L1 adipocytes. EGCG inhibited IGF-I and IGF-II stimulation of adipocyte glucose uptake with dose and time dependencies. EGCG at 20µM for 2h decreased IGF-I- and IGF-II-stimulated glucose uptake by 59% and 64%, respectively. Pretreatment of adipocytes with antibody against the EGCG receptor (also known as the 67-kDa laminin receptor; 67LR), prevented the effects of EGCG on IGF-increased glucose uptake, but pretreatment with normal rabbit immunoglobulin did not. This suggests that the 67LR mediates the anti-IGF effect of EGCG on adipocyte glucose uptake. Further analysis indicated EGCG, IGF-I, and IGF-II did not alter total levels of GLUT1 or GLUT4 protein. However, EGCG prevented the IGF-increased GLUT4 levels in the plasma membrane and blocked the IGF-decreased GLUT4 levels in low-density microsomes. Neither EGCG nor its combination with IGF altered GLUT1 protein levels in the plasma membrane and low-density microsomes. EGCG also suppressed the IGF-stimulated phosphorylation of IGF signaling molecules, PKCζ/λ, but not AKT and ERK1/2, proteins. This study suggests that EGCG suppresses IGF stimulation of 3T3-L1 adipocyte glucose uptake through inhibition of the GLUT4 translocation, but not through alterations of the GLUT1 pathway.


Adipocytes/metabolism , Catechin/analogs & derivatives , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 4/metabolism , Glucose/metabolism , Insulin-Like Growth Factor II/metabolism , Insulin-Like Growth Factor I/metabolism , Tea/chemistry , 3T3-L1 Cells , Acetylcysteine/pharmacology , Adipocytes/drug effects , Animals , Antibodies/metabolism , Catechin/pharmacology , Cell Membrane/drug effects , Cell Membrane/metabolism , Cytoplasm/drug effects , Cytoplasm/metabolism , Mice , Phosphorylation/drug effects , Protein Transport , Receptors, Laminin/metabolism , Signal Transduction/drug effects
...