Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 3338, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099686

RESUMEN

The versatile nucleotide excision repair (NER) pathway initiates as the XPC-RAD23B-CETN2 complex first recognizes DNA lesions from the genomic DNA and recruits the general transcription factor complex, TFIIH, for subsequent lesion verification. Here, we present a cryo-EM structure of an NER initiation complex containing Rad4-Rad23-Rad33 (yeast homologue of XPC-RAD23B-CETN2) and 7-subunit coreTFIIH assembled on a carcinogen-DNA adduct lesion at 3.9-9.2 Å resolution. A ~30-bp DNA duplex could be mapped as it straddles between Rad4 and the Ssl2 (XPB) subunit of TFIIH on the 3' and 5' side of the lesion, respectively. The simultaneous binding with Rad4 and TFIIH was permitted by an unwinding of DNA at the lesion. Translocation coupled with torque generation by Ssl2 and Rad4 would extend the DNA unwinding at the lesion and deliver the damaged strand to Rad3 (XPD) in an open form suitable for subsequent lesion scanning and verification.


Asunto(s)
Microscopía por Crioelectrón , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/química , ADN/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIIH/química , Aductos de ADN/metabolismo , ADN Helicasas/química , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Proteínas de Saccharomyces cerevisiae/genética , Factor de Transcripción TFIIH/genética
2.
DNA Repair (Amst) ; 96: 102985, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33035795

RESUMEN

The Nucleotide Excision Repair (NER) mechanism removes a wide spectrum of structurally different lesions that critically depend on the binding of the DNA damage sensing NER factor XPC-RAD23B (XPC) to the lesions. The bulky mutagenic benzo[a]pyrene diol epoxide metabolite-derived cis- and trans-B[a]P-dG lesions (G*) adopt base-displaced intercalative (cis) or minor groove (trans) conformations in fully paired DNA duplexes with the canonical C opposite G* (G*:C duplexes). While XPC has a high affinity for binding to these DNA lesions in fully complementary double-stranded DNA, we show here that deleting only the C in the complementary strand opposite the lesion G* embedded in 50-mer duplexes, fully abrogates XPC binding. Accurate values of XPC dissociation constants (KD) were determined by employing an excess of unmodified DNA as a competitor; this approach eliminated the binding and accumulation of multiple XPC molecules to the same DNA duplexes, a phenomenon that prevented the accurate estimation of XPC binding affinities in previous studies. Surprisingly, a detailed comparison of XPC dissociation constants KD of unmodified and lesion-containing G*:Del complexes, showed that the KD values were -2.5-3.6 times greater in the case of G*:Del than in the unmodified G:Del and fully base-paired G:C duplexes. The origins of this unexpected XPC lesion avoidance effect is attributed to the intercalation of the bulky, planar B[a]P aromatic ring system between adjacent DNA bases that thermodynamically stabilize the G*:Del duplexes. The strong lesion-base stacking interactions associated with the absence of the partner base, prevent the DNA structural distortions needed for the binding of the BHD2 and BHD3 ß-hairpins of XPC to the deletion duplexes, thus accounting for the loss of XPC binding and the known NER-resistance of G*:Del duplexes.


Asunto(s)
7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/metabolismo , Aductos de ADN/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/química , ADN/química , ADN/metabolismo , Aductos de ADN/química , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/química , Humanos , Cinética , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Conformación Proteica , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Especificidad por Sustrato
3.
Biochemistry ; 59(18): 1728-1736, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32302101

RESUMEN

The interplay between nucleotide excision repair (NER) and base excision repair (BER) of nonbulky, oxidatively generated DNA lesions has long been a subject of significant interest. The hydantoin oxidation products of 8-oxoguanine, spiroiminodihydantoin (Sp) and 5-guanidinohydantoin (Gh), are substrates of both BER and NER in HeLa cell extracts and human cells [Shafirovich, V., et al. (2019) Chem. Res. Toxicol. 32, 753-761]. The primary factor that recognizes DNA lesions is the DNA damage-sensing factor XPC-RAD23B (XPC), while the glycosylase NEIL1 is known to remove Gh and Sp lesions from double-stranded DNA. It is shown here that in aqueous solutions containing nanomolar concentrations of proteins, XPC and NEIL1 compete for binding to 147-mer oligonucleotide duplexes that contain single Gh or Sp lesions under conditions of [protein] ≫ [DNA], thus inhibiting the rate of BER catalyzed by NEIL1. The non-covalently bound NEIL1 molecules can be displaced by XPC at concentration ratios R = [XPC]/[NEIL1] > 0.2, while full displacement of NEIL1 is observed at R ≥ 0.5. In the absence of XPC and under single-turnover conditions, only the burst phase is observable. However, with a progressive increase in the XPC concentration, the amplitude of the burst phase decreases gradually, and a slower time-dependent phase of incision product formation manifests itself with rate constants of 3.0 × 10-3 s-1 (Gh) and 0.90 × 10-3 s-1 (Sp). These slow kinetics are attributed to the dissociation of XPC-DNA complexes that allow for the rebinding of NEIL1 to the temporarily exposed Gh or Sp lesions, and the incisions observed under these steady-state conditions.


Asunto(s)
ADN Glicosilasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Hidantoínas/metabolismo , Unión Competitiva , ADN/efectos de los fármacos , Reparación del ADN , Humanos , Hidantoínas/farmacología , Conformación Molecular , Oxidación-Reducción
4.
Mol Cell ; 71(6): 1092-1104.e5, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30174291

RESUMEN

Activation of class I phosphatidylinositol 3-kinase (PI3K) leads to formation of phosphatidylinositol-3,4,5-trisphophate (PIP3) and phosphatidylinositol-3,4-bisphophate (PI34P2), which spatiotemporally coordinate and regulate a myriad of cellular processes. By simultaneous quantitative imaging of PIP3 and PI34P2 in live cells, we here show that they have a distinctively different spatiotemporal distribution and history in response to growth factor stimulation, which allows them to selectively induce the membrane recruitment and activation of Akt isoforms. PI34P2 selectively activates Akt2 at both the plasma membrane and early endosomes, whereas PIP3 selectively stimulates Akt1 and Akt3 exclusively at the plasma membrane. These spatiotemporally distinct activation patterns of Akt isoforms provide a mechanism for their differential regulation of downstream signaling molecules. Collectively, our studies show that different spatiotemporal dynamics of PIP3 and PI34P2 and their ability to selectively activate key signaling proteins allow them to mediate class I PI3K signaling pathways in a spatiotemporally specific manner.


Asunto(s)
Imagen Óptica/métodos , Fosfatos de Fosfatidilinositol/fisiología , Imagen Individual de Molécula/métodos , Animales , Línea Celular , Membrana Celular , Humanos , Fosfatos de Inositol , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/fisiología , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles , Isoformas de Proteínas , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
5.
J Biol Chem ; 291(10): 5309-19, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26733197

RESUMEN

The well known biomarker of oxidative stress, 8-oxo-7,8-dihydroguanine, is more susceptible to further oxidation than the parent guanine base and can be oxidatively transformed to the genotoxic spiroiminodihydantoin (Sp) and 5-guanidinohydantoin (Gh) lesions. Incubation of 135-mer duplexes with single Sp or Gh lesions in human cell extracts yields a characteristic nucleotide excision repair (NER)-induced ladder of short dual incision oligonucleotide fragments in addition to base excision repair (BER) incision products. The ladders were not observed when NER was inhibited either by mouse monoclonal antibody (5F12) to human XPA or in XPC(-/-) fibroblast cell extracts. However, normal NER activity appeared when the XPC(-/-) cell extracts were complemented with XPC-RAD23B proteins. The Sp and Gh lesions are excellent substrates of both BER and NER. In contrast, 5-guanidino-4-nitroimidazole, a product of the oxidation of guanine in DNA by peroxynitrite, is an excellent substrate of BER only. In the case of mouse embryonic fibroblasts, BER of the Sp lesion is strongly reduced in NEIL1(-/-) relative to NEIL1(+/+) extracts. In summary, in human cell extracts, BER and NER activities co-exist and excise Gh and Sp DNA lesions, suggesting that the relative NER/BER product ratios may depend on competitive BER and NER protein binding to these lesions.


Asunto(s)
Reparación del ADN , Guanina/análogos & derivados , Estrés Oxidativo , Animales , Línea Celular , Células , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Guanina/metabolismo , Guanina/toxicidad , Células HeLa , Humanos , Ratones
6.
Nat Commun ; 6: 5849, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25562780

RESUMEN

The xeroderma pigmentosum C (XPC) complex initiates nucleotide excision repair by recognizing DNA lesions before recruiting downstream factors. How XPC detects structurally diverse lesions embedded within normal DNA is unknown. Here we present a crystal structure that captures the yeast XPC orthologue (Rad4) on a single register of undamaged DNA. The structure shows that a disulphide-tethered Rad4 flips out normal nucleotides and adopts a conformation similar to that seen with damaged DNA. Contrary to many DNA repair enzymes that can directly reject non-target sites as structural misfits, our results suggest that Rad4/XPC uses a kinetic gating mechanism whereby lesion selectivity arises from the kinetic competition between DNA opening and the residence time of Rad4/XPC per site. This mechanism is further supported by measurements of Rad4-induced lesion-opening times using temperature-jump perturbation spectroscopy. Kinetic gating may be a general mechanism used by site-specific DNA-binding proteins to minimize time-consuming interrogations of non-target sites.


Asunto(s)
Daño del ADN/fisiología , Reparación del ADN/fisiología , Proteínas de Unión al ADN/química , ADN/metabolismo , Modelos Moleculares , Complejos Multiproteicos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/fisiología , Biofisica , Cristalización , Proteínas de Unión al ADN/metabolismo , Fluorescencia , Cinética , Complejos Multiproteicos/metabolismo , Conformación Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis Espectral , Temperatura
7.
Biochem J ; 461(2): 323-34, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24785241

RESUMEN

PRDM proteins have emerged as important regulators of disease and developmental processes. To gain insight into the mechanistic actions of the PRDM family, we have performed comprehensive characterization of a prototype member protein, the histone methyltransferase PRDM9, using biochemical, biophysical and chemical biology techniques. In the present paper we report the first known molecular characterization of a PRDM9-methylated recombinant histone octamer and the identification of new histone substrates for the enzyme. A single C321P mutant of the PR/SET domain was demonstrated to significantly weaken PRDM9 activity. Additionally, we have optimized a robust biochemical assay amenable to high-throughput screening to facilitate the generation of small-molecule chemical probes for this protein family. The present study has provided valuable insight into the enzymology of an intrinsically active PRDM protein.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Secuencia de Aminoácidos , Animales , Cisteína/química , Cisteína/genética , Escherichia coli/enzimología , Escherichia coli/genética , Expresión Génica , Ensayos Analíticos de Alto Rendimiento , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , Histonas/química , Histonas/genética , Humanos , Cinética , Mediciones Luminiscentes , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Prolina/química , Prolina/genética , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Xenopus laevis
8.
Anal Biochem ; 427(2): 190-2, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22617796

RESUMEN

Histone octamers are the basic building blocks of chromatin and are platforms for diverse genetic mechanisms. We report a simple method for preparing recombinant histone octamers by overexpressing all four histones from a single polycistronic vector followed by standard chromatography under native conditions. This approach reduces the time needed for the octamer preparation to a single day and should be applicable to making a variety of unmodified and modified histone octamers.


Asunto(s)
Proteínas Bacterianas/genética , Cromatina/genética , Vectores Genéticos/genética , Histonas/genética , Bacterias , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Cromatina/metabolismo , Cromatografía en Gel , Electroforesis en Gel de Poliacrilamida , Expresión Génica , Vectores Genéticos/química , Histonas/aislamiento & purificación , Histonas/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/aislamiento & purificación , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...