Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 109(4-1): 044105, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38755882

RESUMEN

Understanding the emergent behavior of chemical reaction networks (CRNs) is a fundamental aspect of biology and its origin from inanimate matter. A closed CRN monotonically tends to thermal equilibrium, but when it is opened to external reservoirs, a range of behaviors is possible, including transition to a new equilibrium state, a nonequilibrium state, or indefinite growth. This study shows that slowly driven CRNs are governed by the conserved quantities of the closed system, which are generally far fewer in number than the species. Considering both deterministic and stochastic dynamics, a universal slow-dynamics equation is derived with singular perturbation methods and is shown to be thermodynamically consistent. The slow dynamics is highly robust against microscopic details of the network, which may be unknown in practical situations. In particular, nonequilibrium states of realistic large CRNs can be sought without knowledge of bulk reaction rates. The framework is successfully tested against a suite of networks of increasing complexity and argued to be relevant in the treatment of open CRNs as chemical machines.

2.
Soft Matter ; 20(7): 1583-1602, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38273794

RESUMEN

Understanding glass formation by quenching remains a challenge in soft condensed matter physics. Recent numerical studies on steepest descent dynamics, which is one of the simplest models of quenching, revealed that quenched liquids undergo slow relaxation with a power law towards mechanical equilibrium and that the late stage of this process is governed by local rearrangements of particles. These advances motivate the detailed study of instantaneous normal modes during the relaxation process because the glassy dynamics is considered to be governed by stationary points of the potential energy landscape. Here, we performed a normal mode analysis of configurations during the steepest descent dynamics and found that the dynamics is driven by almost flat directions of the potential energy landscape at long times. These directions correspond to localized modes and we characterized them in terms of their statistics and structure using methods developed in the study of local minima of the potential energy landscape.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA